In Silico Study of Mercury Resistance Genes Extracted from Pseudomonas spp. Involved in Bioremediation: Understanding the Promoter Regions and Regulatory Elements

Author:

Dibbisa Duguma1ORCID,Wagari Gobena2ORCID

Affiliation:

1. School of Biological Sciences and Biotechnology, Haramaya University, Dire Dawa, Ethiopia

2. Department of Animal Science, Oda Bultum University, Chiro, Ethiopia

Abstract

Microbial genes and their product were diverse and beneficial for heavy metal bioremediation from the contaminated sites. Screening of genes and gene products plays a significant role in the detoxification of pollutants. Understanding of the promoter region and its regulatory elements is a vital implication of microbial genes. To the best of our knowledge, there is no in silico study reported so far on mer gene families used for heavy metal bioremediation. The motif distribution was observed densely upstream of the TSSs (transcription start sites) between +1 and -350 bp and sparsely distributed above -350 bp, according to the current study. MEME identified the best common candidate motifs of TFs (transcription factors) binding with the lowest e value (7.2 e -033) and is the most statistically significant candidate motif. The EXPREG output of the 11 TFs with varying degrees of function such as activation, repression, transcription, and dual purposes was thoroughly examined. Data revealed that transcriptional gene regulation in terms of activation and repression was observed at 36.4% and 54.56%, respectively. This shows that most TFs are involved in transcription gene repression rather than activation. Likewise, EXPREG output revealed that transcriptional conformational modes, such as monomers, dimers, tetramers, and other factors, were also analyzed. The data indicated that most of the transcriptional conformation mode was dual, which accounts for 96%. CpG island analysis using online and offline tools revealed that the gene body had fewer CpG islands compared to the promoter regions. Understanding the common candidate motifs, transcriptional factors, and regulatory elements of the mer operon gene cluster using a machine learning approach could help us better understand gene expression patterns in heavy metal bioremediation.

Publisher

Hindawi Limited

Subject

Pharmaceutical Science,Genetics,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3