Optimization of extracellular ethanol-tolerant β-glucosidase production from a newly isolated Aspergillus sp. DHE7 via solid state fermentation using jojoba meal as substrate: purification and biochemical characterization for biofuel preparation

Author:

El-Ghonemy Dina H.ORCID

Abstract

Abstract Background The increasing demand and the continuous depletion in fossil fuels have persuaded researchers to investigate new sources of renewable energy. Bioethanol produced from cellulose could be a cost-effective and a viable alternative to petroleum. It is worth note that β-glucosidase plays a key role in the hydrolysis of cellulose and therefore in the production of bioethanol. This study aims to investigate a simple and standardized method for maximization of extracellular β-glucosidase production from a novel fungal isolate under solid-state fermentation using agro-industrial residues as the sole source of carbon and nitrogen. Furthermore, purification and characterization of β-glucosidase were performed to determine the conditions under which the enzyme displayed the highest performance. Results A fungus identified genetically as a new Aspergillus sp. DHE7 was found to exhibit the highest extracellular β-glucosidase production among the sixty fungal isolates tested. Optimization of culture conditions improved the enzyme biosynthesis by 2.1-fold (174.6 ± 5.8 U/g of dry substrate) when the fungus grown for 72 h at 35 °C on jojoba meal with 60% of initial substrate moisture, pH 6.0, and an inoculum size of 2.54 × 107 spores/mL. The enzyme was purified to homogeneity through a multi-step purification process. The purified β-glucosidase is monomeric with a molecular mass of 135 kDa as revealed by the SDS-PAGE analysis. Optimum activity was observed at 60 °C and pH of 6.0, with a remarkable pH and thermal stability. The enzyme retained about 79% and 53% of its activity, after 1 h at 70 °C and 80 °C, respectively. The purified β-glucosidase hydrolysed a wide range of substrates but displaying its greater activity on p-nitrophenyl-β-D-glucopyranoside and cellobiose. The values of Km and Vmax on p-nitrophenyl β-D-glucopyranoside were 0.4 mM and 232.6 U/mL, respectively. Purified β-glucosidase displayed high catalytic activity (improved by 25%) in solutions contained ethanol up to 15%. Conclusion β-glucosidase characteristics associated with its ability to hydrolyse cellobiose, underscore its utilization in improving the quality of food and beverages. In addition, taking into consideration that the final concentration of ethanol produced by the conventional methods is about 10%, suggests its use in ethanol-containing industrial processes and in the saccharification processes for bioethanol production. Graphical abstract

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3