Purification, biochemical characterization, and molecular cloning of cellulase from Bacillus licheniformis strain Z9 isolated from soil

Author:

Elsababty Zainab E.,Abdel-Aziz Samir H.,Ibrahim Atef M.,Guirgis Adel A.,Dawwam Ghada E.ORCID

Abstract

Abstract Background Cellulose is the most prevalent biomass and renewable energy source in nature. The hydrolysis of cellulosic biomass to glucose units is essential for the economic exploitation of this natural resource. Cellulase enzyme, which is largely generated by bacteria and fungus, is commonly used to degrade cellulose. Cellulases are used in a variety of industries, including bioethanol manufacturing, textiles, detergents, drugs, food, and paper. As part of our quest to find an efficient biocatalyst for the hydrolysis of cellulosic biomass, we describe the amplification, cloning, and sequencing of cellulase (cel9z) from Bacillus licheniformis strain Z9, as well as the characterization of the resulting enzyme. Results Cellulase was partially purified from B. licheniformis strain Z9 using (NH4)2SO4 precipitation and Sephadex G-100 gel column chromatography with 356.5 U/mg specific activity, 2.1-purification fold, and 3.07 % yield. The nucleotide sequence of the cellulase gene was deposited to the GenBank, B. licheniformis strain Z9 cellulase (cel9z) gene, under accession number MK814929. This corresponds to 1453 nucleotides gene and encodes for a protein composed of 484 amino acids. Comparison of deduced amino acids sequence to other related cellulases showed that the enzyme cel9z can be classified as a glycoside hydrolase family 9. SDS-PAGE analysis of the purified enzyme revealed that the molecular mass was 54.5 kDa. The optimal enzyme activity was observed at pH 7.4 and 30 °C. The enzyme was found to be strongly inhibited by Mg2+ and Na+, whereas strongly activated by Fe3+, Cu2+, and Ca2+. Conclusions B. licheniformis strain Z9 and its cellulase gene can be further utilized for recombinant production of cellulases for industrial application.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3