Cloning and characterization of low-temperature adapted GH5-CBM3 endo-cellulase from Bacillus subtilis 1AJ3 and their application in the saccharification of switchgrass and coffee grounds

Author:

Ma Lingling,Aizhan Rakhmanova,Wang Xin,Yi Yanglei,Shan Yuanyuan,Liu Bianfang,Zhou Yuan,Lü Xin

Abstract

AbstractEndocellulase is a key cellulase for cellulosic material pretreatment in the industry by hydrolyzing long cellulose chains into short chains. To investigate the endocellulase characteristics from Bacillus subtilis 1AJ3, and increase its production yield, this paper cloned an endocellulase gene denoted CEL-5A from strain 1AJ3 and expressed in E. coli BL21 (DE3). The CEL-5A gene was sequenced with a full-length of 1500 bp, encoding a totally of 500 amino acids, and containing two domains: the GH5 family catalytic domain (CD) and the CBM3 family cellulose-binding domain (CBD). Recombinant endocellulase Cel-5A with a His-tag was purified of the Ni-NTA column, and SDS-PAGE results demonstrated that Cel-5A exhibited a molecular weight of 56.4 kDa. The maximum enzyme activity of Cel-5A was observed at pH 4.5 and 50 °C. Moreover, it was active over the broad temperature region of 30–60 °C, and stable within the pH range of 4.5–10.0. In addition, Co2+ was able to increase enzyme activity, while the majority of metal ions demonstrated stable enzyme activity under low- concentration. The substrate specificity of Cel-5A exhibited a high specific activity on the β-1,3-1,4 glucan linkage from barley. The Michaelis–Menten constant and the maximum velocity of the recombinant Cel-5A for CMC-Na were determined as 14.87 mg/mL and 19.19 μmol/min/mg, respectively. When Cel-5A was applied to the switchgrass and coffee grounds, its color became lighter and the biomass was observed to loosen following hydrolyzation. The saccharification rate reached 12% of the total weight of switchgrass in 20 h. These properties highlight the potential application of Cel-5A as an endocellulase in the pretreatment of biomass, for example, in the coffee grounds/waste, and related industries.

Funder

Special Fund for Agro-scientific Research in the Public Interest

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Biophysics

Reference38 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3