In silico structural homology modelling of EST073 motif coding protein of tea Camellia sinensis (L)

Author:

Karunarathna K. H. T.ORCID,Senathilake N. H. K. S.,Mewan K. M.,Weerasena O. V. D. S. J.,Perera S. A. C. N.

Abstract

Abstract Background Tea (Camellia sinensis (L). O. Kuntze) is known as the oldest, mild stimulating caffeine containing non-alcoholic beverage. One of the major threats in south Asian tea industry is the blister blight leaf disease (BB), caused by the fungus Exobasidium vexans Masse. SSR DNA marker EST SSR 073 is used as a molecular marker to tag blister blight disease resistance trait of tea. The amino acid sequences were derived from cDNA sequences related to EST SSR 073 of BB susceptible (TRI 2023) and BB resistant (TRI 2043) cultivars. An attempt has been made to understand the structural characteristics and variations of EST SSR 073 locus that may reveal the factors influencing the BB resistance of tea with multiple bioinformatics tools such as ORF finder, ExPasy ProtParam tools, modeler V 9.17, Rampage server, UCSF-Chimera, and HADDOCK docking server. Results The primary, secondary, and tertiary structures of EST SSR 073 coding protein were analyzed using the amino acid sequences of both BB resistant TRI 2043 and BB susceptible TRI 2023 tea cultivars. The coding amino acid sequences of both the cultivars were homologous to photosystem I subunit protein (PsaD I) of Pisum sativum. The predicted 3D structures of proteins were validated and considered as an acceptable overall stereochemical quality. The BB resistant protein showed CT repeat extension and did not involve in topology of the PsaD I subunit. The C terminal truncation of BB resistance caused the formation of hydrogen bonds interacting with PsaD I and other subunits of photosystem I in the modeled three-dimensional protein structure. Conclusions Camellia sinensis EST 073 SSR motif coding protein was identified as the PsaD I subunit of photosystem I. The exact mechanism of PsaD I conferring the resistance for blister blight in tea needs to be further investigated.

Funder

National Research Council Sri Lanka

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Reference50 articles.

1. Anon (2017) Annual ITC Bulletin of Statistics. International Tea Committee. pp 51-61

2. Agnihothrudu V, Moulli BC (1991) Blister blight of tea, its control and future lines of research. In: Proceedings of International Symposium on Tea Science, Shizuoka, Japan. 26-29 Aug 1991. p. 655-59

3. TRISL.(2002) TRI advisory Circular, no DM: 1 – protection of tea from blister blight.Talawakelle;TRISL.1-5

4. Baby UI, Balasubramanian S, Ajay D, Premkumar R (2004) Effect of ergosterol biosynthesis inhibitors on blister blight disease, the tea plant and quality of made tea. Crop Protection. 23:795–800

5. Barooahi AK, Kalita N, Borthakur MN, Barooaht A, Barman T (2002) Non-tariff trade barriers - pesticide residues and heavy metals in tea and approaches to mitigate them. Two and a Bud. 59(2):1–8

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3