Reconstruction and analysis of potential biomarkers for hypertrophic cardiomyopathy based on a competing endogenous RNA network

Author:

Chen Jin-yan,Xie Zhang-xin,Dai Jia-zhen,Han Jun-yong,Wang Kun,Lu Li-hong,Jin Jing-jun,Xue Shi-jie

Abstract

AbstractHypertrophic cardiomyopathy (HCM) is a common heritable cardiomyopath. Although considerable effort has been made to understand the pathogenesis of HCM, the mechanism of how long noncoding RNA (lncRNA)-associated competing endogenous RNA (ceRNA) network result in HCM remains unknown. In this study, we acquired a total of 520 different expression profiles of lncRNAs (DElncRNAs) and 371 messenger RNAs (mRNA, DEGs) by microarray and 33 microRNAs (DEmiRNAs) by sequencing in plasma of patients with HCM and healthy controls. Then lncRNA–miRNA pairs were predicted using miRcode and starBase and crossed with DEmiRNAs. MiRNA–mRNA pairs were retrieved from miRanda and TargetScan and crossed with DEGs. Combined with these pairs, the ceRNA network with eight lncRNAs, three miRNAs, and 22 mRNAs was constructed. lncRNA RP11-66N24.4 and LINC00310 were among the top 10% nodes. The hub nodes were analyzed to reconstruct a subnetwork. Furthermore, quantitative real-time polymerase chain reaction results showed that LINC00310 was significantly decreased in patients with HCM. For LINC00310, GO analysis revealed that biological processes were enriched in cardiovascular system development, sprouting angiogenesis, circulatory system development, and pathway analysis in the cGMP-PKG signaling pathway. These results indicate that the novel lncRNA-related ceRNA network in HCM and LINC00310 may play a role in the mechanism of HCM pathogenesis, which could provide insight into the pathogenesis of HCM.

Funder

Natural Science Foundation of Fujian Province

Fundamental Research Project of Fujian Provincial Research Institute for Public Welfare, China

Fujian Provincial Health Technology Project

Publisher

Springer Science and Business Media LLC

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3