Abstract
Abstract
Background
The impact of reduction in glycemic excursion on coronary plaques remains unknown. This study aimed to elucidate whether a dipeptidyl peptidase 4 inhibitor could reduce the glycemic excursion and stabilize the coronary plaques compared with conventional management in coronary artery disease (CAD) patients with impaired glucose tolerance (IGT).
Methods
This was a multicenter, randomized controlled trial including CAD patients with IGT under lipid-lowering therapy receiving either vildagliptin (50 mg once a day) or no medication (control group) regarding glycemic treatment. The primary endpoint was changes in the minimum fibrous cap thickness and lipid arc in non-significant native coronary plaques detected by optical coherence tomography at 6 months after intervention. Glycemic variability expressed as the mean amplitude of glycemic excursion (MAGE) measured with a continuous glucose monitoring system was evaluated before and 6 months after intervention.
Results
A total of 20 participants with 47 lesions were allocated to either the vildagliptin group (10 participants, 22 lesions) or the control group (10 participants, 25 lesions). The adjusted difference of mean changes between the groups was − 18.8 mg/dl (95% confidence interval, − 30.8 to − 6.8) (p = 0.0064) for the MAGE (vildagliptin, − 20.1 ± 18.0 mg/dl vs. control, 2.6 ± 12.7 mg/dl), − 22.8° (− 40.6° to − 5.1°) (p = 0.0012) for the mean lipid arc (vildagliptin, − 9.0° ± 25.5° vs. control, 15.8° ± 16.8°), and 42.7 μm (15.3 to 70.1 μm) (p = 0.0022) for the minimum fibrous cap thickness (vildagliptin, 35.7 ± 50.8 μm vs. control, − 15.1 ± 25.2 μm).
Conclusions
Vildagliptin could reduce the MAGE at 6 months and may be associated with the decreased lipid arc and increased minimum FCT of the coronary plaques in CAD patients with IGT as compared with the control group. These findings may represent its potential stabilization effect on coronary plaques, which are characteristic in this patient subset.
Trial registration Registered in the UMIN clinical trial registry (UMIN000008620), Name of the registry: VOGUE trial, Date of registration: Aug 6, 2012, URL: https://upload.umin.ac.jp/cgi-open-bin/ctr/ctr_view.cgi?recptno=R000010058
Publisher
Springer Science and Business Media LLC
Subject
Cardiology and Cardiovascular Medicine
Reference26 articles.
1. Shepherd J, Cobbe SM, Ford I, Isles CG, Lorimer AR, MacFarlane PW, et al. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group. N Engl J Med. 1995;333:1301–7.
2. Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M, et al. Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet. 2002;359:2072–7.
3. Ceriello A. The post-prandial state and cardiovascular disease: relevance to diabetes mellitus. Diabetes Metab Res Rev. 2000;16:125–32.
4. Kuroda M, Shinke T, Sakaguchi K, Otake H, Takaya T, Hirota Y, et al. Effect of daily glucose fluctuation on coronary plaque vulnerability in patients pre-treated with lipid-lowering therapy: a prospective observational study. JACC Cardiovasc Interv. 2015a;8:800–11.
5. Glucose tolerance and mortality: comparison of WHO and American Diabetes Association diagnostic criteria. The DECODE study group. European Diabetes Epidemiology Group. Diabetes Epidemiology: Collaborative analysis Of Diagnostic criteria in Europe. Lancet. 1999;354:617–21.