Author:
Patoori Sruti,Jean-Charles Nathalie,Gopal Ariana,Sulaiman Sacha,Gopal Sneha,Wang Brian,Souferi Benjamin,Emerson Mark M.
Abstract
Abstract
Background
The vertebrate retina consists of six major classes of neuronal cells. During development, these cells are generated from a pool of multipotent retinal progenitor cells (RPCs) that express the gene Vsx2. Fate-restricted RPCs have recently been identified, with limited mitotic potential and cell fate possibilities compared to multipotent RPCs. One population of fate-restricted RPCs, marked by activity of the regulatory element ThrbCRM1, gives rise to both cone photoreceptors and horizontal cells. These cells do not express Vsx2, but co-express the transcription factors (TFs) Onecut1 and Otx2, which bind to ThrbCRM1. The components of the gene regulatory networks that control the transition from multipotent to fate-restricted gene expression are not known. This work aims to identify and evaluate cis-regulatory elements proximal to Onecut1 to identify the gene regulatory networks involved in RPC fate-restriction.
Method
We identified regulatory elements through ATAC-seq and conservation, followed by reporter assays to screen for activity based on temporal and spatial criteria. The regulatory elements of interest were subject to deletion and mutation analysis to identify functional sequences and evaluated by quantitative flow cytometry assays. Finally, we combined the enhancer::reporter assays with candidate TF overexpression to evaluate the relationship between the TFs, the enhancers, and early vertebrate retinal development. Statistical tests included ANOVA, Kruskal-Wallis, or unpaired t-tests.
Results
Two regulatory elements, ECR9 and ECR65, were identified to be active in ThrbCRM1(+) restricted RPCs. Candidate bHLH binding sites were identified as critical sequences in both elements. Overexpression of candidate bHLH TFs revealed specific enhancer-bHLH interactions. Nhlh1 overexpression expanded ECR65 activity into the Vsx2(+) RPC population, and overexpression of NeuroD1/NeuroG2/NeuroD4 had a similar effect on ECR9. Furthermore, bHLHs that were able to activate ectopic ECR9 reporter were able to induce endogenous Otx2 expression.
Conclusions
This work reports a large-scale screen to identify spatiotemporally specific regulatory elements near the Onecut1 locus. These elements were used to identify distinct populations in the developing retina. In addition, fate-restricted regulatory elements responded differentially to bHLH factors, and suggest a role for retinal bHLHs upstream of the Otx2 and Onecut1 genes during the formation of restricted RPCs from multipotent RPCs.
Funder
National Science Foundation
Alfred P. Sloan Foundation
National Institutes of Health
Publisher
Springer Science and Business Media LLC
Subject
Developmental Neuroscience
Reference47 articles.
1. Afgan E, Baker D, Batut B, van den Beek M, Bouvier D, Cech M, Chilton J, Clements D, Coraor N, Grüning BA, et al. The galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 2018;46:W537–44.
2. Akagi T, Inoue T, Miyoshi G, Bessho Y, Takahashi M, Lee JE, Guillemot F, Kageyama R. Requirement of multiple basic helix-loop-helix genes for retinal neuronal subtype specification. J Biol Chem. 2004;279:28492–8.
3. Bailey TL, Elkan C. Fitting a mixture model by expectation maximization to discover motifs in biopolymer. Proc Int Conf Intell Syst Mol Biol. 1994;2:28–36.
4. Billings NA, Emerson MM, Cepko CL. Analysis of thyroid response element activity during retinal development. PLoS One. 2010;5:e13739.
5. Blankenberg D, Gordon A, Von Kuster G, Coraor N, Taylor J, Nekrutenko A. Manipulation of FASTQ data with galaxy. Bioinformatics. 2010;26:1783–5.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献