Does the intraoperative 3D-flat panel control of the planned implant position lead to an optimization and increased in safety in the anatomically demanding region C1/2?

Author:

Jarvers J.-S.,Spiegl U. A. J.,Pieroh P.,von der Höh N.,Völker A.,Pfeifle C.,Glasmacher S.,Heyde C. E.

Abstract

Abstract Background The aim of this study was to evaluate the applicability and advantages of intraoperative imaging using a 3D flat panel in the treatment of C1/2 instabilities. Materials Prospective single-centered study including surgeries at the upper cervical spine between 06/2016 and 12/2018. Intraoperatively thin K-wires were placed under 2D fluoroscopic control. Then an intraoperative 3D-scan was carried out. The image quality was assessed based on a numeric analogue scale (NAS) from 0 to 10 (0 = worst quality, 10 = perfect quality) and the time for the 3D-scan was measured. Additionally, the wire positions were evaluated regarding malpositions. Results A total of 58 patients were included (33f, 25 m, average age 75.2 years, r.:18–95) with pathologies of C2: 45 type II fractures according to Anderson/D'Alonzo with or without arthrosis of C1/2, 2 Unhappy triad of C1/2 (Odontoid fracture Type II, anterior or posterior C1 arch-fracture, Arthrosis C1/2) 4 pathological fractures, 3 pseudarthroses, 3 instabilities of C1/2 because of rheumatoid arthritis, 1 C2 arch fracture). 36 patients were treated from anterior [29 AOTAF (combined anterior odontoid and transarticular C1/2 screw fixation), 6 lag screws, 1 cement augmented lag screw] and 22 patients from posterior (regarding to Goel/Harms). The median image quality was 8.2 (r.: 6–10). In 41 patients (70.7%) the image quality was 8 or higher and in none of the patients below 6. All of those 17 patients the image quality below 8 (NAS 7 = 16; 27.6%, NAS 6 = 1, 1.7%), had dental implants. A total of 148 wires were analyzed. 133 (89.9%) showed a correct positioning. In the other 15 (10.1%) cases a repositioning had to be done (n = 8; 5.4%) or it had to be drawn back (n = 7; 4.7%). A repositioning was possible in all cases. The implementation of an intraoperative 3D-Scan took an average of 267 s (r.: 232-310 s). No technical problems occurred. Conclusion Intraoperative 3D imaging in the upper cervical spine is fast and easy to perform with sufficient image quality in all patients. Potential malposition of the primary screw canal can be detected by initial wire positioning before the Scan. The intraoperative correction was possible in all patients. Trial registration German Trials Register (Registered 10 August 2021, DRKS00026644—Trial registration: German Trials Register (Registered 10 August 2021, DRKS00026644—https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00026644)

Funder

Universitätsklinikum Leipzig

Publisher

Springer Science and Business Media LLC

Subject

General Medicine,Surgery

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3