Abstract
Abstract
Background
Artistic gymnastics is a popular Olympic discipline where female athletes compete in four and male athletes in six events with floor exercise having the longest competition duration in Women’s and Men’s artistic gymnastics (WAG, MAG). To date no valid information on the energetics of floor gymnastics is available although this may be important for specific conditioning programming. This study evaluated the metabolic profile of a simulated floor competition in sub-elite gymnasts.
Methods
17 (9 male, 8 female) sub-elite gymnasts aged 22.5 ± 2.6y took part in a floor-training-competition where oxygen uptake was measured during and until 15 min post-exercise. Additionally, resting and peak blood lactate concentration after exercise were obtained. The PCr-LA-O2 method was used to calculate the metabolic energy and the relative aerobic (WAER), anaerobic alactic (WPCr) and anaerobic lactic (WBLC) energy contribution. Further, the athletes completed a 30 s Bosco-jumping test, a countermovement jump and a drop jump.
Results
The competition scores were 9.2 (CI:8.9–9.3) in WAG and 10.6 (CI:10.4–10.9) in MAG. The metabolic profile of the floor routine was mainly aerobic (58.9%, CI: 56.0–61.8%) followed by the anaerobic alactic (24.2%, CI: 21.3–27.1%) and anaerobic lactic shares (16.9%, CI:14.9–18.8%). While sex had a significant (p = .010, d = 1.207) large effect on energy contribution, this was not the case for competition duration (p = .728, d = 0.061). Relative energy contribution of WAG and MAG differed in WAER (64.0 ± 4.7% vs. 54.4 ± 6.8%, p = .004, d = 1.739) but not in WPCr (21.3 ± 6.1% vs. 26.7 ± 8.0%, p = .144, d = 0.801) and WBLC (14.7 ± 5.4% vs. 18.9 ± 4.2%, p = .085, d = 0.954). Further no correlation between any energy share and performance was found but between WPCr and training experience (r = .680, p = .044) and WBLC and competition level (r = .668, p = .049).
Conclusion
The results show a predominant aerobic energy contribution and a considerable anaerobic contribution with no significant difference between anaerobic shares. Consequently, gymnastic specific aerobic training should not be neglected, while a different aerobic share in WAG and MAG strengthens sex-specific conditioning. All in all, the specific metabolic share must secure adequate energy provision, while relative proportions of the two anaerobic pathways seem to depend on training and competition history.
Funder
Julius-Maximilians-Universität Würzburg
Publisher
Springer Science and Business Media LLC
Subject
Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine
Reference40 articles.
1. IOC. Gymnastics Artistic: International Olympic Committee; [Available from: https://www.olympic.org/gymnastics-artistic.
2. FIG, editor. Code de pointage: Gymnastique artistique masculine [Code of points: Artistic gymnastics]. Lausanne, Switzerland: Fédération Internationale de Gymnastique; 2013.
3. FIG, editor. Code de Pointage–Gymnastique artistique féminine [Code of points: Artistic gymnastics]. Lausanne, Switzerland2017.
4. Prassas S, Kwon YH, Sands WA. Biomechanical research in artistic gymnastics: a review. Sports Biomech. 2006;5(2):261–91.
5. Jemni M, Friemel F, Lechevalier J-M, Origas M. Heart rate and blood lactate concentration analysis during a high-level men’s gymnastics competition. J Strength Cond Res. 2000;14(4):389–94.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献