Abstract
Abstract
Background
Plyometric training can be performed through many types of exercises involving the stretch-shortening cycle in lower limbs. In the last decades, a high number of studies have investigated the effects of plyometric training on several outcomes in different populations.
Objectives
To systematically review, summarize the findings, and access the quality of published meta-analyses investigating the effects of plyometric training on physical performance.
Design
Systematic umbrella review of meta-analyses.
Data Sources
Meta-analyses were identified using a systematic literature search in the databases PubMed/MEDLINE, Scopus, SPORTDiscus, Web of Science, Cochrane Library and Scielo.
Eligibility Criteria for Selecting Meta-analyses
Meta-analyses that examined the effects of plyometric training on physical fitness in different populations, age groups, and sex.
Results
Twenty-nine meta-analyses with moderate-to-high methodological quality were included in this umbrella review. We identified a relevant weakness in the current literature, in which five meta-analyses included control group comparisons, while 24 included pre-to-post-effect sizes. Trivial-to-large effects were found considering the effects of plyometric training on physical performance for healthy individuals, medium-trivial effects for the sports athletes’ groups and medium effects for different sports athletes’ groups, age groups, and physical performance.
Conclusion
The available evidence indicates that plyometric training improves most related physical fitness parameters and sports performance. However, it is important to outline that most meta-analyses included papers lacking a control condition. As such, the results should be interpreted with caution.
PROSPERO number: CRD42020217918.
Publisher
Springer Science and Business Media LLC
Subject
Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine
Reference72 articles.
1. Ramirez-Campillo R, Moran J, Chaabene H, Granacher U, Behm D, García-Hermoso A, Izquierdo M. Methodological characteristics and future directions for plyometric jump training research: a scoping review update. Scand J Med Sci Sports. 2020;30:983–97.
2. Ford HT, Puckett JR, Drummond JP, Sawyer K, Gantt K, Fussell C. Effects of three combinations of plyometric and weight training programs on selected physical fitness test items. Percept Mot Skills. 1983;56(3):919–22. https://doi.org/10.2466/pms.1983.56.3.919.
3. Spurrs RW, Murphy AJ, Watsford ML. The effect of plyometric training on distance running performance. Eur J Appl Physiol. 2003;89(1):1–7. https://doi.org/10.1007/s00421-002-0741-y.
4. Diallo O, Dore E, Duche P, Van Praagh E. Effects of plyometric training followed by a reduced training programme on physical performance in prepubescent soccer players. J Sports Med Phys Fitness. 2001;41(3):342–8.
5. Matavulj D, Kukolj M, Ugarkovic D, Tihanyi J, Jaric S. Effects of plyometric training on jumping performance in junior basketball players. J Sports Med Phys Fitness. 2001;41(2):159–64.
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献