QSAR DataBank - an approach for the digital organization and archiving of QSAR model information

Author:

Ruusmann Villu,Sild Sulev,Maran Uko

Abstract

Abstract Background Research efforts in the field of descriptive and predictive Quantitative Structure-Activity Relationships or Quantitative Structure–Property Relationships produce around one thousand scientific publications annually. All the materials and results are mainly communicated using printed media. The printed media in its present form have obvious limitations when they come to effectively representing mathematical models, including complex and non-linear, and large bodies of associated numerical chemical data. It is not supportive of secondary information extraction or reuse efforts while in silico studies poses additional requirements for accessibility, transparency and reproducibility of the research. This gap can and should be bridged by introducing domain-specific digital data exchange standards and tools. The current publication presents a formal specification of the quantitative structure-activity relationship data organization and archival format called the QSAR DataBank (QsarDB for shorter, or QDB for shortest). Results The article describes QsarDB data schema, which formalizes QSAR concepts (objects and relationships between them) and QsarDB data format, which formalizes their presentation for computer systems. The utility and benefits of QsarDB have been thoroughly tested by solving everyday QSAR and predictive modeling problems, with examples in the field of predictive toxicology, and can be applied for a wide variety of other endpoints. The work is accompanied with open source reference implementation and tools. Conclusions The proposed open data, open source, and open standards design is open to public and proprietary extensions on many levels. Selected use cases exemplify the benefits of the proposed QsarDB data format. General ideas for future development are discussed.

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Computer Graphics and Computer-Aided Design,Physical and Theoretical Chemistry,Computer Science Applications

Reference58 articles.

1. Tropsha A: Best practices for QSAR model development, validation, and exploitation. Mol Inf. 2010, 29: 476-488. 10.1002/minf.201000061.

2. Dearden JC, Cronin MT, Kaiser KL: How not to develop a quantitative structure-activity or structure–property relationship (QSAR/QSPR). SAR QSAR. Environ Res. 2009, 20: 241-266.

3. Stouch TR, Kenyon JR, Johnson SR, Chen XQ, Doweyko A, Li Y: In silico ADME/Tox: why models fail. J Comput Aided Mol Des. 2003, 17: 83-92. 10.1023/A:1025358319677.

4. Foster I, Kesselman C: The Grid 2: Blueprint for a New Computing Infrastructure. 2003, San Francisco, CA: Morgan Kaufmann Publishers Inc.

5. Open Computing GRID for Molecular Science and Engineering (OpenMolGRID); EU 5-th FP, # IST-2001-37238, duration 2002–2005. [http://www.openmolgrid.org]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3