A comparison of conditional random fields and structured support vector machines for chemical entity recognition in biomedical literature

Author:

Tang Buzhou,Feng Yudong,Wang Xiaolong,Wu Yonghui,Zhang Yaoyun,Jiang Min,Wang Jingqi,Xu Hua

Abstract

Abstract Background Chemical compounds and drugs (together called chemical entities) embedded in scientific articles are crucial for many information extraction tasks in the biomedical domain. However, only a very limited number of chemical entity recognition systems are publically available, probably due to the lack of large manually annotated corpora. To accelerate the development of chemical entity recognition systems, the Spanish National Cancer Research Center (CNIO) and The University of Navarra organized a challenge on Chemical and Drug Named Entity Recognition (CHEMDNER). The CHEMDNER challenge contains two individual subtasks: 1) Chemical Entity Mention recognition (CEM); and 2) Chemical Document Indexing (CDI). Our study proposes machine learning-based systems for the CEM task. Methods The 2013 CHEMDNER challenge organizers provided a manually annotated 10,000 UTF8-encoded PubMed abstracts according to a predefined annotation guideline: a training set of 3,500 abstracts, a development set of 3,500 abstracts and a test set of 3,000 abstracts. We developed machine learning-based systems, based on conditional random fields (CRF) and structured support vector machines (SSVM) respectively, for the CEM task for this data set. The effects of three types of word representation (WR) features, generated by Brown clustering, random indexing and skip-gram, on both two machine learning-based systems were also investigated. The performance of our system was evaluated on the test set using scripts provided by the CHEMDNER challenge organizers. Primary evaluation measures were micro Precision, Recall, and F-measure. Results Our best system was among the top ranked systems with an official micro F-measure of 85.05%. Fixing a bug caused by inconsistent features marginally improved the performance (micro F-measure of 85.20%) of the system. Conclusions The SSVM-based CEM systems outperformed the CRF-based CEM systems when using the same features. Each type of the WR feature was beneficial to the CEM task. Both the CRF-based and SSVM-based systems using the all three types of WR features showed better performance than the systems using only one type of the WR feature.

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Computer Graphics and Computer-Aided Design,Physical and Theoretical Chemistry,Computer Science Applications

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3