Band gap information extraction from materials science literature – a pilot study

Author:

Ghosh SatanuORCID,Lu KunORCID

Abstract

PurposeThe purpose of this paper is to present a preliminary work on extracting band gap information of materials from academic papers. With increasing demand for renewable energy, band gap information will help material scientists design and implement novel photovoltaic (PV) cells.Design/methodology/approachThe authors collected 1.44 million titles and abstracts of scholarly articles related to materials science, and then filtered the collection to 11,939 articles that potentially contain relevant information about materials and their band gap values. ChemDataExtractor was extended to extract information about PV materials and their band gap information. Evaluation was performed on randomly sampled information records of 415 papers.FindingsThe findings of this study show that the current system is able to correctly extract information for 51.32% articles, with partially correct extraction for 36.62% articles and incorrect for 12.04%. The authors have also identified the errors belonging to three main categories pertaining to chemical entity identification, band gap information and interdependency resolution. Future work will focus on addressing these errors to improve the performance of the system.Originality/valueThe authors did not find any literature to date on band gap information extraction from academic text using automated methods. This work is unique and original. Band gap information is of importance to materials scientists in applications such as solar cells, light emitting diodes and laser diodes.

Publisher

Emerald

Subject

Library and Information Sciences,Information Systems

Reference68 articles.

1. Aggarwal, C.C. and Zhai, C.X. (2013), “Mining text data”, in Mining Text Data, Vol. 9781461432234, doi: 10.1007/978-1-4614-3223-4.

2. A comparative analysis of chemical named entity recognition using support vector machines,2013

3. An overview of the CRAFT concept annotation guidelines,2010

4. An algorithm that learns what's in a name;Machine Learning,1999

5. The unified medical language system (UMLS): integrating biomedical terminology;Nucleic Acids Research,2004

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3