A geographic identifier assignment algorithm with Bayesian variable selection to identify neighborhood factors associated with emergency department visit disparities for asthma

Author:

Bozigar MatthewORCID,Lawson Andrew,Pearce John,King Kathryn,Svendsen Erik

Abstract

Abstract Background Ecologic health studies often rely on outcomes from health service utilization data that are limited by relatively coarse spatial resolutions and missing geographic information, particularly neighborhood level identifiers. When fine-scale geographic data are missing, the ramifications and strategies for addressing them are not well researched or developed. This study illustrates a novel spatio-temporal framework that combines a geographic identifier assignment (i.e., geographic imputation) algorithm with predictive Bayesian variable selection to identify neighborhood factors associated with disparities in emergency department (ED) visits for asthma. Methods ED visit records with missing fine-scale spatial identifiers (~ 20%) were geocoded using information from known, coarser, misaligned spatial units using an innovative geographic identifier assignment algorithm. We then employed systematic variable selection in a spatio-temporal Bayesian hierarchical model (BHM) predictive framework within the NIMBLE package in R. Our novel methodology is illustrated in an ecologic case study aimed at identifying neighborhood-level predictors of asthma ED visits in South Carolina, United States, from 1999 to 2015. The health outcome was annual ED visit counts in small areas (i.e., census tracts) with primary diagnoses of asthma (ICD9 codes 493.XX) among children ages 5 to 19 years. Results We maintained 96% of ED visit records for this analysis. When the algorithm used areal proportions as probabilities for assignment, which addressed differential missingness of census tract identifiers in rural areas, variable selection consistently identified significant neighborhood-level predictors of asthma ED visit risk including pharmacy proximity, average household size, and carbon monoxide interactions. Contrasted with common solutions of removing geographically incomplete records or scaling up analyses, our methodology identified critical differences in parameters estimated, predictors selected, and inferences. We posit that the differences were attributable to improved data resolution, resulting in greater power and less bias. Importantly, without this methodology, we would have inaccurately identified predictors of risk for asthma ED visits, particularly in rural areas. Conclusions Our approach innovatively addressed several issues in ecologic health studies, including missing small-area geographic information, multiple correlated neighborhood covariates, and multiscale unmeasured confounding factors. Our methodology could be widely applied to other small-area studies, useful to a range of researchers throughout the world.

Funder

National Heart, Lung, and Blood Institute

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health,General Business, Management and Accounting,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3