Obtaining district-level health estimates using geographically masked location from Demographic and Health Survey data

Author:

Wilson EmilyORCID,Hazel Elizabeth,Park Lois,Carter Emily,Moulton Lawrence H.,Heidkamp Rebecca,Perin Jamie

Abstract

Abstract Background Demographic and Health Survey (DHS) data are an important source of maternal, newborn, and child health as well as nutrition information for low- and middle-income countries. However, DHSs are often unavailable at the administrative unit that is most interesting or useful for program planning. In addition, the location of DHS survey clusters are geomasked within 10 km, and prior to 2009, may have crossed district boundaries. We aim to use DHS surveyed information with these geomasked coordinates to estimate district assignments for use in health program planning and evaluation. Methods We developed three methods to assign a district to a geomasked survey cluster in two DHS surveys from Malawi: 2000 and 2004. Method A assigns districts of origin in proportion to the likelihood that results from repeated simulated geomasking, allowing more than one possible district of origin. Method B assigns a single district of origin which contains the greatest proportion of simulated geomasked survey clusters. Method C maps the geomasked survey cluster’s location to a district polygon. We used these method assignments to estimate a selection of commonly used coverage indicators for each district. We compared the district coverage estimates, confidence intervals, and concordance correlation coefficients, by each of the methods, to those which used validated district assignments in 2004, and we looked at coverage change from 2000 to 2004. Results The methods we tested each approximated the validated estimates in 2004 by confidence interval comparison and concordance correlation coefficient. Estimated agreement for method A was between .14 and .98, for method B the estimated agreement was between .97 and .99, and for method C the agreement ranged from .93 to .99 when compared with the validated district assignments. Therefore, we recommend the protocol which is the simplest to implement—method C—overlaying geomasked survey cluster within district polygon. Conclusions Using geomasked survey clusters from DHSs to assign districts provided district level coverage rates similar to those using the validated surveyed locations. This method may be applied to data sources where survey cluster centroids are available and where district level estimates are needed for program implementation and evaluation in low- and middle-income settings. This method is of special interest to those using DHSs to study spatiotemporal trends as it allows for the utilization of historic DHS data where geomasking hinders the generation of reliable subnational estimates of health in areas smaller than the first-order administrative unit (ADM1).

Funder

Global Affairs Canada

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health,General Business, Management and Accounting,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3