A transfer learning model with multi-source domains for biomedical event trigger extraction

Author:

Chen YifeiORCID

Abstract

Abstract Background Automatic extraction of biomedical events from literature, that allows for faster update of the latest discoveries automatically, is a heated research topic now. Trigger word recognition is a critical step in the process of event extraction. Its performance directly influences the results of the event extraction. In general, machine learning-based trigger recognition approaches such as neural networks must to be trained on a dataset with plentiful annotations to achieve high performances. However, the problem of the datasets in wide coverage event domains is that their annotations are insufficient and imbalance. One of the methods widely used to deal with this problem is transfer learning. In this work, we aim to extend the transfer learning to utilize multiple source domains. Multiple source domain datasets can be jointly trained to help achieve a higher recognition performance on a target domain with wide coverage events. Results Based on the study of previous work, we propose an improved multi-source domain neural network transfer learning architecture and a training approach for biomedical trigger detection task, which can share knowledge between the multi-source and target domains more comprehensively. We extend the ability of traditional adversarial networks to extract common features between source and target domains, when there is more than one dataset in the source domains. Multiple feature extraction channels to simultaneously capture global and local common features are designed. Moreover, under the constraint of an extra classifier, the multiple local common feature sub-channels can extract and transfer more diverse common features from the related multi-source domains effectively. In the experiments, MLEE corpus is used to train and test the proposed model to recognize the wide coverage triggers as a target dataset. Other four corpora with the varying degrees of relevance with MLEE from different domains are used as source datasets, respectively. Our proposed approach achieves recognition improvement compared with traditional adversarial networks. Moreover, its performance is competitive compared with the results of other leading systems on the same MLEE corpus. Conclusions The proposed Multi-Source Transfer Learning-based Trigger Recognizer (MSTLTR) can further improve the performance compared with the traditional method, when the source domains are more than one. The most essential improvement is that our approach represents common features in two aspects: the global common features and the local common features. Hence, these more sharable features improve the performance and generalization of the model on the target domain effectively.

Funder

the Natural Science Foundation of Jiangsu Province

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Reference46 articles.

1. Ananiadou S, McNaught J (Eds). Text mining for biology and biomedicine. London UK: Artech House Publishers; 2005.

2. Zweigenbaum P, Demner-Fushman D, Yu H, Cohen KB. Frontiers of biomedical text mining: current progress. Brief Bioinf. 2007; 8(5):358–75.

3. Ananiadou S, Pyysalo S, Tsujii J, Kell DB. Event extraction for systems biology by text mining the literature. Treds Biotechnol. 2010; 28(7):381–90.

4. Kim JD, Ohta T, Pyysalo A, Kano Y, Tsujii J. Overview of BioNLP’09 shared task on event extraction. In: Proceedings of the BioNLP 2009 Workshop Companion Volume for Shared Task. Boulder: Association for Computational Linguistics: 2009. p. 1–9.

5. Kim J-D, Pyysalo S, Ohta T, Bossy R, Nguyen N, Tsujii J. Overview of BioNLP shared task 2011. In: Proceedings of the BioNLP Shared Task 2011 Workshop. Portland: Association for Computational Linguistics: 2011. p. 1–6.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3