Deep Transfer Learning Enables Robust Prediction of Antimicrobial Resistance for Novel Antibiotics

Author:

Ren YunxiaoORCID,Chakraborty Trinad,Doijad SwapnilORCID,Falgenhauer Linda,Falgenhauer Jane,Goesmann Alexander,Schwengers Oliver,Heider DominikORCID

Abstract

Antimicrobial resistance (AMR) has become one of the serious global health problems, threatening the effective treatment of a growing number of infections. Machine learning and deep learning show great potential in rapid and accurate AMR predictions. However, a large number of samples for the training of these models is essential. In particular, for novel antibiotics, limited training samples and data imbalance hinder the models’ generalization performance and overall accuracy. We propose a deep transfer learning model that can improve model performance for AMR prediction on small, imbalanced datasets. As our approach relies on transfer learning and secondary mutations, it is also applicable to novel antibiotics and emerging resistances in the future and enables quick diagnostics and personalized treatments.

Funder

Federal Ministry of Education and Research

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

Reference45 articles.

1. Antimicrobial Resistance: A Global Multifaceted Phenomenon;Prestinaci;Pathog. Glob. Health,2015

2. WHO-Antimicrobial_Resistance_Whitepaper. 2021.

3. Sequencing-Based Methods and Resources to Study Antimicrobial Resistance;Boolchandani;Nat. Rev. Genet.,2019

4. Machine Learning: Novel Bioinformatics Approaches for Combating Antimicrobial Resistance;Macesic;Curr. Opin. Infect. Dis.,2017

5. A White-Box Machine Learning Approach for Revealing Antibiotic Mechanisms of Action;Yang;Cell,2019

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3