An overlooked phenomenon: complex interactions of potential error sources on the quality of bacterial de novo genome assemblies

Author:

Rádai Zoltán,Váradi Alex,Takács Péter,Nagy Nikoletta Andrea,Schmitt Nicholas,Prépost Eszter,Kardos Gábor,Laczkó Levente

Abstract

Abstract Background Parameters adversely affecting the contiguity and accuracy of the assemblies from Illumina next-generation sequencing (NGS) are well described. However, past studies generally focused on their additive effects, overlooking their potential interactions possibly exacerbating one another’s effects in a multiplicative manner. To investigate whether or not they act interactively on de novo genome assembly quality, we simulated sequencing data for 13 bacterial reference genomes, with varying levels of error rate, sequencing depth, PCR and optical duplicate ratios. Results We assessed the quality of assemblies from the simulated sequencing data with a number of contiguity and accuracy metrics, which we used to quantify both additive and multiplicative effects of the four parameters. We found that the tested parameters are engaged in complex interactions, exerting multiplicative, rather than additive, effects on assembly quality. Also, the ratio of non-repeated regions and GC% of the original genomes can shape how the four parameters affect assembly quality. Conclusions We provide a framework for consideration in future studies using de novo genome assembly of bacterial genomes, e.g. in choosing the optimal sequencing depth, balancing between its positive effect on contiguity and negative effect on accuracy due to its interaction with error rate. Furthermore, the properties of the genomes to be sequenced also should be taken into account, as they might influence the effects of error sources themselves.

Funder

European Regional Development Fund

University of Debrecen

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3