Transcriptome profiles of Quercus rubra responding to increased O3 stress

Author:

Soltani Nourolah,Best Teo,Grace Dantria,Nelms Christen,Shumaker Ketia,Romero-Severson Jeanne,Moses Daniela,Schuster Stephan,Staton MargaretORCID,Carlson John,Gwinn Kimberly

Abstract

Abstract Background Climate plays an essential role in forest health, and climate change may increase forest productivity losses due to abiotic and biotic stress. Increased temperature leads to the increased formation of ozone (O3). Ozone is formed by the interaction of sunlight, molecular oxygen and by the reactions of chemicals commonly found in industrial and automobile emissions such as nitrogen oxides and volatile organic compounds. Although it is well known that productivity of Northern red oak (Quercus rubra) (NRO), an ecologically and economically important species in the forests of eastern North America, is reduced by exposure to O3, limited information is available on its responses to exogenous stimuli at the level of gene expression. Results RNA sequencing yielded more than 323 million high-quality raw sequence reads. De novo assembly generated 52,662 unigenes, of which more than 42,000 sequences could be annotated through homology-based searches. A total of 4140 differential expressed genes (DEGs) were detected in response to O3 stress, as compared to their respective controls. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of the O3-response DEGs revealed perturbation of several biological pathways including energy, lipid, amino acid, carbohydrate and terpenoid metabolism as well as plant-pathogen interaction. Conclusion This study provides the first reference transcriptome for NRO and initial insights into the genomic responses of NRO to O3. Gene expression profiling reveals altered primary and secondary metabolism of NRO seedlings, including known defense responses such as terpenoid biosynthesis.

Funder

National Science Foundation

National Institute of Food and Agriculture

Louis W. Schatz Center for Tree Molecular Genetics

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Reference123 articles.

1. Sork VL, Stowe KA, Hochwender C. Evidence for local adaptation in closely adjacent subpopulations of northern red oak (Quercus rubra L.) expressed as resistance to leaf herbivores. The Am Nat. 1993;142(6):928–36.

2. Luppold WG, Bumgardner MS. Examination of lumber price trends for major hardwood species. Wood Fiber Sci. 2007;39(3):404–13.

3. Godfrey RK. Trees, shrubs, and woody vines of northern Florida and adjacent Georgia and Alabama. Athens: University of Georgia Press; 1988.

4. Sander IL. Quercus rubra L. northern red oak. Silvics North Am. 1990;2:727–33.

5. Newell Wohner PJ, Cooper RJ, Greenberg RS, Schweitzer SH. Weather affects diet composition of rusty blackbirds wintering in suburban landscapes. JWildlife Manage. 2016;80(1):91–100.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3