An updated de novo transcriptome for green ash (Fraxinus pennsylvanica)

Author:

Brungardt Jordan J1,Bock Clive H1

Affiliation:

1. USDA-ARS Southeastern Fruit & Tree Nut Research Laboratory   21 Dunbar Rd. Byron, GA 31008 , USA

Abstract

Abstract De novo transcriptome assembly of next-generation sequencing information has become a powerful tool for the study of non-model species. Transcriptomes generated by this method can have high variability due to endless combinations of user defined variables and programs available for assembly. Many methods have been developed for evaluating the quality of these assemblies. Here, raw sequencing information for Green ash (Fraxinus pennsylvanica Marshall) that was previously published has been re-evaluated. An updated assembly has been developed by including additional sequencing information not used for the currently accepted transcriptome in combination with more stringent trimming parameters. Input reads were assembled with Trinity and Abyss assembly programs. The resulting Trinity assembly has a 7.3-fold increase in genomic breadth of coverage, a 2.4-fold increase in predicted complete open reading frames, an increased L50 value, and increased BUSCO completeness compared to the earlier published transcriptome. This updated transcriptome can be leveraged to help fight the rapid decline of green ash due to pathogens.

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3