Diversification of the aquaporin family in geographical isolated oyster species promote the adaptability to dynamic environments

Author:

Jia Yanglei,Liu Xiao

Abstract

Abstract Background The diversified aquaporin (AQP) family that was derived from gene duplication and subsequent functional differentiation play critical roles in multiple physiological processes and in adaptation to the dynamic environments during the evolutionary process. Oysters are a group of bivalve fauna in Mollusca that were widely distributed around the world and show extraordinary adaptation to harsh environments. However, knowledge is lacking with the diversity and evolution of the AQP family in oysters, even in molluscs. Results Here, we performed a comprehensive analysis of the AQP family in three geographical isolated oyster species that are native to different environments. Genome distribution and phylogenetic analysis revealed that the expansion of the AQP family in oysters were attributed to tandem duplication. Synteny analysis indicated that large-scale inversions lead to the independent duplication or deletion of the AQPs after speciation. As a consequence, these independent duplication events contributed to the diversification of the AQP family in different oysters. Pore pattern analysis suggested that the duplicated AQPs in oysters were highly diversified in inner surface profiles, implying the subsequent functional differentiation. The comparison conducted based on the transcriptome data demonstrated that the functional differentiated AQP family members in oysters may play critical roles in maintaining the balance between the stationary homeostasis and dynamic environments. Conclusions Our observation provides evidence for the correlation between the duplicated and functional differentiated AQP family and the adaptation to stationary life under dynamic environments in oysters. Additionally, it also broadens our knowledge of the evolution of AQP family in molluscs.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3