STELAR: a statistically consistent coalescent-based species tree estimation method by maximizing triplet consistency

Author:

Islam Mazharul,Sarker Kowshika,Das Trisha,Reaz Rezwana,Bayzid Md. ShamsuzzohaORCID

Abstract

Abstract Background Species tree estimation is frequently based on phylogenomic approaches that use multiple genes from throughout the genome. However, estimating a species tree from a collection of gene trees can be complicated due to the presence of gene tree incongruence resulting from incomplete lineage sorting (ILS), which is modelled by the multi-species coalescent process. Maximum likelihood and Bayesian MCMC methods can potentially result in accurate trees, but they do not scale well to large datasets. Results We present STELAR (Species Tree Estimation by maximizing tripLet AgReement), a new fast and highly accurate statistically consistent coalescent-based method for estimating species trees from a collection of gene trees. We formalized the constrained triplet consensus (CTC) problem and showed that the solution to the CTC problem is a statistically consistent estimate of the species tree under the multi-species coalescent (MSC) model. STELAR is an efficient dynamic programming based solution to the CTC problem which is highly accurate and scalable. We evaluated the accuracy of STELAR in comparison with SuperTriplets, which is an alternate fast and highly accurate triplet-based supertree method, and with MP-EST and ASTRAL – two of the most popular and accurate coalescent-based methods. Experimental results suggest that STELAR matches the accuracy of ASTRAL and improves on MP-EST and SuperTriplets. Conclusions Theoretical and empirical results (on both simulated and real biological datasets) suggest that STELAR is a valuable technique for species tree estimation from gene tree distributions.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3