Dollo-CDP: a polynomial-time algorithm for the clade-constrained large Dollo parsimony problem

Author:

Dai Junyan,Rubel Tobias,Han Yunheng,Molloy Erin K.

Abstract

AbstractThe last decade of phylogenetics has seen the development of many methods that leverage constraints plus dynamic programming. The goal of this algorithmic technique is to produce a phylogeny that is optimal with respect to some objective function and that lies within a constrained version of tree space. The popular species tree estimation method ASTRAL, for example, returns a tree that (1) maximizes the quartet score computed with respect to the input gene trees and that (2) draws its branches (bipartitions) from the input constraint set. This technique has yet to be used for parsimony problems where the input are binary characters, sometimes with missing values. Here, we introduce the clade-constrained character parsimony problem and present an algorithm that solves this problem for the Dollo criterion score in $$O(|\Sigma |^{3.726}(n+k) + |\Sigma |^{1.726}nk)$$ O ( | Σ | 3.726 ( n + k ) + | Σ | 1.726 n k ) time, where n is the number of leaves, k is the number of characters, and $$\Sigma$$ Σ is the set of clades used as constraints. Dollo parsimony, which requires traits/mutations to be gained at most once but allows them to be lost any number of times, is widely used for tumor phylogenetics as well as species phylogenetics, for example analyses of low-homoplasy retroelement insertions across the vertebrate tree of life. This motivated us to implement our algorithm in a software package, called Dollo-CDP, and evaluate its utility for analyzing retroelement insertion presence / absence patterns for bats, birds, toothed whales as well as simulated data. Our results show that Dollo-CDP can improve upon heuristic search from a single starting tree, often recovering a better scoring tree. Moreover, Dollo-CDP scales to data sets with much larger numbers of taxa than branch-and-bound while still having an optimality guarantee, albeit a more restricted one. Lastly, we show that our algorithm for Dollo parsimony can easily be adapted to Camin-Sokal parsimony but not Fitch parsimony.

Funder

State of Maryland

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Theory and Mathematics,Molecular Biology,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3