Determination of genetic effects and functional SNPs of bovine HTR1B gene on milk fatty acid traits

Author:

Cao Mingyue,Shi Lijun,Peng Peng,Han Bo,Liu Lin,Lv Xiaoqing,Ma Zhu,Zhang ShengliORCID,Sun Dongxiao

Abstract

Abstract Background Our previous genome-wide association study (GWAS) on milk fatty acid traits in Chinese Holstein cows revealed, the SNP, BTB-01556197, was significantly associated with C10:0 at genome-wide level (P = 0.0239). It was located in the down-stream of 5-hydroxytryptamine receptor 1B (HTR1B) gene that has been shown to play an important role in the regulation of fatty acid oxidation. Hence, we considered it as a promising candidate gene for milk fatty acids in dairy cattle. In this study, we aimed to investigate whether the HTR1B gene had significant genetic effects on milk fatty acid traits. Results We re-sequenced the entire coding region and 3000 bp of 5′ and 3′ flanking regions of HTR1B gene. A total of 13 SNPs was identified, containing one in 5′ flanking region, two in 5′ untranslated region (UTR), two in exon 1, five in 3′ UTR, and three in 3′ flanking region. By performing genotype-phenotype association analysis with SAS9.2 software, we observed that 13 SNPs were significantly associated with medium-chain saturated fatty acids such as C6:0, C8:0 and C10:0 (P < 0.0001 ~ 0.042). With Haploview 4.1 software, linkage disequilibrium (LD) analysis was performed. Two haplotype blocks formed by two and ten SNPs were observed. Haplotype-based association analysis indicated that both haplotype blocks were strongly associated with C6:0, C8:0 and C10:0 as well (P < 0.0001 ~ 0.0071). With regards to the missense mutation in exon 1 (g.17303383G > T) that reduced amino acid change from alanine to serine, we predicted that it altered the secondary structure of HTR1B protein with SOPMA. In addition, we predicted that three SNPs in promoter region, g.17307103A > T, g.17305206 T > G and g.17303761C > T, altered the binding sites of transcription factors (TFs) HMX2, PAX2, FOXP1ES, MIZ1, CUX2, DREAM, and PPAR-RXR by Genomatix. Of them, luciferase assay experiment further confirmed that the allele T of g.17307103A > T significantly increased the transcriptional activity of HTR1B gene than allele A (P = 0.0007). Conclusions In conclusion, our findings provided first evidence that the HTR1B gene had significant genetic effects on milk fatty acids in dairy cattle.

Funder

Beijing Science and Technology Program

National Science and Technology Programs of China

National Natural Science Foundation of China

Earmarked Fund for Modern Agro-industry Technology Research System

the Program for Changjiang Scholar and Innovation Research Team in University

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3