Complete chloroplast genome sequences of the ornamental plant Prunus cistena and comparative and phylogenetic analyses with its closely related species

Author:

Feng Lijuan,Zhao Guopeng,An Mengmeng,Wang Chuanzeng,Yin Yanlei

Abstract

Abstract Background Prunus cistena is an excellent color leaf configuration tree for urban landscaping in the world, which has purplish red leaves, light pink flowers, plant shape and high ornamental value. Genomic resources for P. cistena are scarce, and a clear phylogenetic and evolutionary history for this species has yet to be elucidated. Here, we sequenced and analyzed the complete chloroplast genome of P. cistena and compared it with related species of the genus Prunus based on the chloroplast genome. Results The complete chloroplast genome of P. cistena is a 157,935 bp long typical tetrad structure, with an overall GC content of 36.72% and higher GC content in the in the inverted repeats (IR) regions than in the large single-copy (LSC) and small single-copy (SSC) regions. It contains 130 genes, including 85 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. The ycf3 and clpP genes have two introns, with the longest intron in the trnK-UUU gene in the LSC region. Moreover, the genome has a total of 253SSRs, with the mononucleotide SSRs being the most abundant. The chloroplast sequences and gene arrangements of P. cistena are highly conserved, with the overall structure and gene order similar to other Prunus species. The atpE, ccsA, petA, rps8, and matK genes have undergone significant positive selection in Prunus species. P. cistena has a close evolutionary relationship with P. jamasakura. The coding and IR regions are more conserved than the noncoding regions, and the chloroplast DNA sequences are highly conserved throughout the genus Prunus. Conclusions The current genomic datasets provide valuable information for further species identification, evolution, and phylogenetic research of the genus Prunus.

Funder

Agricultural Science and Technology Innovation Engineering Discipline Team of Shandong Academy of Agricultural Sciences

Shandong Key Research and Development Projects

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3