Comparative analysis of the complete plastid genomes in Prunus subgenus Cerasus (Rosaceae): Molecular structures and phylogenetic relationships

Author:

Li MengORCID,Song Yan-Feng,Sylvester Steven P.,Sylvester Steven P.,Wang Xian-RongORCID

Abstract

Prunus subgenus Cerasus (cherry) is an economically important group that distributed in temperate regions of the northern hemisphere. However, shared interspecific morphological traits and variability across taxa of Cerasus are among the impediments to taxonomic efforts to correctly delimit taxa. This is further complicated by a lack of genetic information on these taxa, with no focused genomic or phylogenetic studies being done on Cerasus. In this study, we conducted comparative analysis on the complete plastid genomes (plastomes) of 20 Cerasus species to gain a greater understanding of the attributes of the plastome of these taxa while helping resolve their phylogenetic placement in Prunus sensu lato and interspecific relationships within the subgenus. Our results displayed that (1) the plastomes of the 20 Cerasus species studied exhibited a typical quadripartite structure with conversed genome arrangement, structure, and moderate divergence. (2) The average size of complete plastomes for the Cerasus taxa studied was 157,861 bp, ranging from 157,458 to 158,024 bp. A total of 134 genes were annotated, including 86 protein-coding genes, 40 tRNAs, and 8 rRNAs across all species. In simple sequence repeat analysis, we found Cerasus had a comparable number of dispersed and tandem repeats to those identified in other angiosperm taxa, with only P. pseudocerasus found to contain trinucleotide repeats. Nucleotide diversity analysis revealed that the trnG-GCC gene and rpl32-trnL region had the highest Pi value showing potential as phylogenetic markers. (3) Two phylogenetic trees of the plastomes verified the monophyletic relationship of Cerasus and provided a more resolved species-level phylogeny. Our study provides detailed plastome information for exploring the phylogeny of subg. Cerasus taxa. We identified various types of repeats and nucleotide diversity hotspots, which can be a reference for species identification and reconstruction of phylogenetic relationships.

Funder

Jiangsu Science and Technology Department

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference41 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3