Tuberomics: a molecular profiling for the adaption of edible fungi (Tuber magnatum Pico) to different natural environments

Author:

Vita FedericoORCID,Giuntoli Beatrice,Bertolini Edoardo,Taiti Cosimo,Marone Elettra,D’Ambrosio Chiara,Trovato Emanuela,Sciarrone Danilo,Zoccali Mariosimone,Balestrini Raffaella,Scaloni Andrea,Mondello Luigi,Mancuso Stefano,Alessio Massimo,Alpi Amedeo

Abstract

Abstract Background Truffles are symbiotic fungi that develop underground in association with plant roots, forming ectomycorrhizae. They are primarily known for the organoleptic qualities of their hypogeous fruiting bodies. Primarily, Tuber magnatum Pico is a greatly appreciated truffle species mainly distributed in Italy and Balkans. Its price and features are mostly depending on its geographical origin. However, the genetic variation within T. magnatum has been only partially investigated as well as its adaptation to several environments. Results Here, we applied an integrated omic strategy to T. magnatum fruiting bodies collected during several seasons from three different areas located in the North, Center and South of Italy, with the aim to distinguish them according to molecular and biochemical traits and to verify the impact of several environments on these properties. With the proteomic approach based on two-dimensional electrophoresis (2-DE) followed by mass spectrometry, we were able to identify proteins specifically linked to the sample origin. We further associated the proteomic results to an RNA-seq profiling, which confirmed the possibility to differentiate samples according to their source and provided a basis for the detailed analysis of genes involved in sulfur metabolism. Finally, geographical specificities were associated with the set of volatile compounds produced by the fruiting bodies, as quantitatively and qualitatively determined through proton transfer reaction-mass spectrometry (PTR-MS) and gas-chromatography-mass spectrometry (GC-MS). In particular, a partial least squares-discriminant analysis (PLS-DA) model built from the latter data was able to return high confidence predictions of sample source. Conclusions Results provide a characterization of white fruiting bodies by a wide range of different molecules, suggesting the role for specific compounds in the responses and adaptation to distinct environments.

Funder

Regione Toscana

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Reference99 articles.

1. Bonito G, Smith ME, Nowak M, Healy RA, Guevara G, Cázares E, Kinoshita A, Nouhra ER, Domínguez LS, Tedersoo L. Historical biogeography and diversification of truffles in the Tuberaceae and their newly identified southern hemisphere sister lineage. PLoS One. 2013;8(1):e52765.

2. Lancellotti E, Iotti M, Zambonelli A, Franceschini A. The Puberulum Group Sensu Lato (Whitish Truffles). In: True Truffle (Tuber spp) in the World: Soil Ecology, Systematics and Biochemistry. Edited by Zambonelli A, Iotti M, Murat C. Cham: Springer International Publishing; 2016. p. 105-124.

3. Hall IR, Yun W, Amicucci A. Cultivation of edible ectomycorrhizal mushrooms. Trends Biotechnol. 2003;21(10):433–8.

4. Zambonelli A, Iotti M, Hall I. Current status of truffle cultivation: recent results and future perspectives. Ital J Mycol. 2015;44(1):31–40.

5. Hu H, Wang Y, Hu B. Cultivation of Tuber formosanum on limed soil in Taiwan. New Zealand J Crop Horticultural Sci. 2005;33(4):363–6.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3