Author:
Reddy Shishir,Hung Ling-Hong,Sala-Torra Olga,Radich Jerald P.,Yeung Cecilia CS,Yeung Ka Yee
Abstract
Abstract
Background
Long-read sequencing has great promise in enabling portable, rapid molecular-assisted cancer diagnoses. A key challenge in democratizing long-read sequencing technology in the biomedical and clinical community is the lack of graphical bioinformatics software tools which can efficiently process the raw nanopore reads, support graphical output and interactive visualizations for interpretations of results. Another obstacle is that high performance software tools for long-read sequencing data analyses often leverage graphics processing units (GPU), which is challenging and time-consuming to configure, especially on the cloud.
Results
We present a graphical cloud-enabled workflow for fast, interactive analysis of nanopore sequencing data using GPUs. Users customize parameters, monitor execution and visualize results through an accessible graphical interface. The workflow and its components are completely containerized to ensure reproducibility and facilitate installation of the GPU-enabled software. We also provide an Amazon Machine Image (AMI) with all software and drivers pre-installed for GPU computing on the cloud. Most importantly, we demonstrate the potential of applying our software tools to reduce the turnaround time of cancer diagnostics by generating blood cancer (NB4, K562, ME1, 238 MV4;11) cell line Nanopore data using the Flongle adapter. We observe a 29x speedup and a 93x reduction in costs for the rate-limiting basecalling step in the analysis of blood cancer cell line data.
Conclusions
Our interactive and efficient software tools will make analyses of Nanopore data using GPU and cloud computing accessible to biomedical and clinical scientists, thus facilitating the adoption of cost effective, fast, portable and real-time long-read sequencing.
Funder
National Institutes of Health
Natioonal Comprehensive Cancer Network
Hyuandai
Publisher
Springer Science and Business Media LLC
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献