Author:
Zhao Chen,Ma Guanchu,Zhou Lin,Zhang Song,Su Le,Sun Xin,Borrás-Hidalgo Orlando,Li Kunlun,Yue Qiulin,Zhao Lin
Abstract
Abstract
Background
Welsh onion constitutes an important crop due to its benefits in traditional medicine. Nitrogen is an important nutrient for plant growth and yield; however, little is known about its influence on the mechanisms of Welsh onion regulation genes. In this study, we introduced a gene expression and amino acid analysis of Welsh onion treated with different concentrations of nitrogen (N0, N1, and N2 at 0 kg/ha, 130 kg/ha, and 260 kg/ha, respectively).
Results
Approximately 1,665 genes were differentially regulated with different concentrations of nitrogen. Gene ontology enrichment analysis revealed that the genes involved in metabolic processes, protein biosynthesis, and transportation of amino acids were highly represented. KEGG analysis indicated that the pathways were related to amino acid metabolism, cysteine, beta-alanine, arginine, proline, and glutathione. Differential gene expression in response to varying nitrogen concentrations resulted in different amino acid content. A close relationship between gene expression and the content of amino acids was observed.
Conclusions
This work examined the effects of nitrogen on gene expression and amino acid synthesis and provides important evidence on the efficient use of nitrogen in Welsh onion.
Funder
Key Technologies Research and Development Program of China
Key Technology Research and Development Program of Shandong
Science, education and industry integration innovation pilot project of Qilu University of Technology
Publisher
Springer Science and Business Media LLC
Reference41 articles.
1. Frink CR, Waggoner PE, Ausubel JH. Nitrogen fertilizer: retrospect and prospect. P Natl Acad Sci USA. 1999;96(4):1175–80.
2. Horchani F, Prévot M, Boscari A, Evangelisti E, Meilhoc E, Bruand C, et al. Both plant and bacterial nitrate reductases contribute to nitric oxide production in Medicago truncatula nitrogen-fixing nodules. Plant Physiol. 2011;155(2):1023–36.
3. Laura Z, Silvia V, Nicola T, Anita Z, De BFRM, Zeno V, et al. Short-Term treatment with the urease inhibitor N-(n-Butyl) thiophosphoric triamide (NBPT) alters urea assimilation and modulates transcriptional profiles of genes involved in primary and secondary metabolism in maize seedlings. Front Plant Sci. 2016;7(62):845.
4. Dong Y, Cheng Z, Meng H, Liu H, Wu C, Khan AR. The effect of cultivar, sowing date and transplant location in field on bolting of welsh onion (Allium fistulosum L.). Bmc Plant Biol. 2013;13(1):1–12.
5. Sun XD, Yu XH, Zhou SM, Liu SQ. De novo assembly and characterization of the Welsh onion (Allium fistulosum L.) transcriptome using Illumina technology. Mol Genet Genomics. 2015;291(2):647–59.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献