Author:
Vo Thu Thi Minh,Nguyen Tuan Viet,Amoroso Gianluca,Ventura Tomer,Elizur Abigail
Abstract
Abstract
Background
The flesh pigmentation of farmed Atlantic salmon is formed by accumulation of carotenoids derived from commercial diets. In the salmon gastrointestinal system, the hindgut is considered critical in the processes of carotenoids uptake and metabolism. In Tasmania, flesh color depletion can noticeably affect farmed Atlantic salmon at different levels of severity following extremely hot summers. In this study, RNA sequencing (RNA-Seq) was performed to investigate the reduction in flesh pigmentation. Library preparation is a key step that significantly impacts the effectiveness of RNA sequencing (RNA-Seq) experiments. Besides the commonly used whole transcript RNA-Seq method, the 3’ mRNA-Seq method is being applied widely, owing to its reduced cost, enabling more repeats to be sequenced at the expense of lower resolution. Therefore, the output of the Illumina TruSeq kit (whole transcript RNA-Seq) and the Lexogen QuantSeq kit (3’ mRNA-Seq) was analyzed to identify genes in the Atlantic salmon hindgut that are differentially expressed (DEGs) between two flesh color phenotypes.
Results
In both methods, DEGs between the two color phenotypes were associated with metal ion transport, oxidation-reduction processes, and immune responses. We also found DEGs related to lipid metabolism in the QuantSeq method. In the TruSeq method, a missense mutation was detected in DEGs in different flesh color traits. The number of DEGs found in the TruSeq libraries was much higher than the QuantSeq; however, the trend of DEGs in both library methods was similar and validated by qPCR.
Conclusions
Flesh coloration in Atlantic salmon is related to lipid metabolism in which apolipoproteins, serum albumin and fatty acid-binding protein genes are hypothesized to be linked to the absorption, transport and deposition of carotenoids. Our findings suggest that Grp could inhibit the feeding behavior of low color-banded fish, resulting in the dietary carotenoid shortage. Several SNPs in genes involving in carotenoid-binding cholesterol and oxidative stress were detected in both flesh color phenotypes. Regarding the choice of the library preparation method, the selection criteria depend on the research design and purpose. The 3’ mRNA-Seq method is ideal for targeted identification of highly expressed genes, while the whole RNA-Seq method is recommended for identification of unknown genes, enabling the identification of splice variants and trait-associated SNPs, as we have found for duox2 and duoxa1.
Funder
Fisheries Research and Development Corporation
Publisher
Springer Science and Business Media LLC
Reference105 articles.
1. Anderson S. Salmon Color and the Consumer. Microbehavior and Macroresults: Proceedings of the Tenth Biennial Conference of the International Institute ofFisheries Economics and Trade, July 10-14, 2000, Corvallis, Oregon, USA.Compiled by Richard S. Johnston and Ann L. Shriver. Corvallis: InternationalInstitute of Fisheries Economics and Trade (IIFET); 2001.
2. Chitchumroonchokchai C, Failla ML. Bioaccessibility and intestinal cell uptake of astaxanthin from salmon and commercial supplements. Food Research International. 2017;99:936–43.
3. Olsen RE, Kiessling A, Milley JE, Ross NW, Lall SP. Effect of lipid source and bile salts in diet of Atlantic salmon, Salmo salar L., on astaxanthin blood levels. Aquaculture. 2005;250(3):804–12.
4. Nickell DC, Bromage NR. The effect of dietary lipid level on variation of flesh pigmentation in rainbow trout (Oncorhynchus mykiss). Aquaculture. 1998;161(1):237–51.
5. Bjerkeng B, Hamre K, Hatlen B, Wathne E. Astaxanthin deposition in fillets of Atlantic salmon Salmo salar L. fed two dietary levels of astaxanthin in combination with three levels of α-tocopheryl acetate. Aquac Res. 2001;30(9):637–46.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献