Impacts of multiple anthropogenic stressors on the transcriptional response of Gammarus fossarum in a mesocosm field experiment

Author:

Brasseur Marie V.ORCID,Beermann Arne J.ORCID,Elbrecht VascoORCID,Grabner DanielORCID,Peinert-Voss Bianca,Salis RomanaORCID,Weiss MartinaORCID,Mayer ChristophORCID,Leese FlorianORCID

Abstract

Abstract Background Freshwaters are exposed to multiple anthropogenic stressors, leading to habitat degradation and biodiversity decline. In particular, agricultural stressors are known to result in decreased abundances and community shifts towards more tolerant taxa. However, the combined effects of stressors are difficult to predict as they can interact in complex ways, leading to enhanced (synergistic) or decreased (antagonistic) response patterns. Furthermore, stress responses may remain undetected if only the abundance changes in ecological experiments are considered, as organisms may have physiological protective pathways to counteract stressor effects. Therefore, we here used transcriptome-wide sequencing data to quantify single and combined effects of elevated fine sediment deposition, increased salinity and reduced flow velocity on the gene expression of the amphipod Gammarus fossarum in a mesocosm field experiment. Results Stressor exposure resulted in a strong transcriptional suppression of genes involved in metabolic and energy consuming cellular processes, indicating that Gfossarum responds to stressor exposure by directing energy to vitally essential processes. Treatments involving increased salinity induced by far the strongest transcriptional response, contrasting the observed abundance patterns where no effect was detected. Specifically, increased salinity induced the expression of detoxification enzymes and ion transporter genes, which control the membrane permeability of sodium, potassium or chloride. Stressor interactions at the physiological level were mainly antagonistic, such as the combined effect of increased fine sediment and reduced flow velocity. The compensation of the fine sediment induced effect by reduced flow velocity is in line with observations based on specimen abundance data. Conclusions Our findings show that gene expression data provide new mechanistic insights in responses of freshwater organisms to multiple anthropogenic stressors. The assessment of stressor effects at the transcriptomic level and its integration with stressor effects at the level of specimen abundances significantly contribute to our understanding of multiple stressor effects in freshwater ecosystems.

Funder

Stiftung Leibniz-Institut zur Analyse des Biodiversitätswandels (LIB)

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3