Comprehensive profiling of alternative splicing landscape during cold acclimation in tea plant

Author:

Li Yeyun,Mi Xiaozeng,Zhao Shiqi,Zhu Junyan,Guo Rui,Xia Xiaobo,Liu Lu,Liu Shengrui,Wei ChaolingORCID

Abstract

Abstract Background Alternative splicing (AS) may generate multiple mRNA splicing isoforms from a single mRNA precursor using different splicing sites, leading to enhanced diversity of transcripts and proteins. AS has been implicated in cold acclimation by affecting gene expression in various ways, yet little information is known about how AS influences cold responses in tea plant (Camellia sinensis). Results In this study, the AS transcriptional landscape was characterized in the tea plant genome using high-throughput RNA-seq during cold acclimation. We found that more than 41% (14,103) of genes underwent AS events. We summarize the possible existence of 11 types of AS events, including the four common types of intron retention (IR), exon skipping (ES), alternative 5′ splice site (A5SS), and alternative 3′ splice site (A3SS); of these, IR was the major type in all samples. The number of AS events increased rapidly during cold treatment, but decreased significantly following de-acclimation (DA). It is notable that the number of differential AS genes gradually increased during cold acclimation, and these genes were enriched in pathways relating to oxidoreductase activity and sugar metabolism during acclimation and de-acclimation. Remarkably, the AS isoforms of bHLH transcription factors showed higher expression levels than their full-length ones during cold acclimation. Interestingly, the expression pattern of some AS transcripts of raffinose and sucrose synthase genes were significantly correlated with sugar contents. Conclusion Our findings demonstrated that changes in AS numbers and transcript expression may contribute to rapid changes in gene expression and metabolite profile during cold acclimation, suggesting that AS events play an important regulatory role in response to cold acclimation in tea plant.

Funder

the National Key Research and Development Program of China

the National Natural Science Foundation of China

the Special Innovative Province Construction in Anhui Province

the Special Project for Central Guiding Science and Technology Innovation of Region in Anhui Province

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3