Genome-Wide Analysis of Alternative Splicing Events Responding to High Temperatures in Populus tomentosa Carr.

Author:

Wang Xue1,Wang Yan2,Wang Ruixue2,Gong Longfeng1,Wang Lei1,Xu Jichen12

Affiliation:

1. State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China

2. National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China

Abstract

Through alternative splicing (AS) processes, eukaryotic genes can generate a variety of transcription isoforms that lower the expression levels of the normal transcripts or result in diversity in the genes’ activities. Then, AS plays a significant role in the control of plant development and stress tolerance. In this study, we analyzed Populus tomentosa Carr. TC1521’s AS episodes in response to high temperatures. The samples treated at 25 °C, 30 °C, 35 °C, and 40 °C produced a total of 10,418, 11,202, 9947, and 14,121 AS events, respectively, which responded to 4105, 4276, 4079, and 4915 genes, respectively, representing 9.84%, 10.25%, 9.78%, and 11.78% of the total number of transcribed genes, respectively. The most common AS pattern, accounting for 42.31% to 51.00% of all AS events, was intron retention (IR), followed by exon skipping (ES), which accounted for 9.14% to 10.23% of all AS events. respectively. According to sequence characterization, AS was negatively correlated with guanine-cytosine content (GC content) but favorably correlated with intron length, exon number, exon length, and gene transcription level. Compared to treatment at 25 °C, 2001 distinct AS genes were discovered at 40 °C. They were primarily enriched in the RNA degradation pathway and the valine, leucine, and isoleucine degradation route, according to (gene ontology) GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. These findings demonstrated how the AS process might be severely impacted by high temperatures. In addition, the information on AS isoforms helped us comprehend stress-resistance mechanisms in new ways and completed molecular design breeding.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3