Altered expression of microRNAs in the rat diaphragm in a model of ventilator-induced diaphragm dysfunction after controlled mechanical ventilation

Author:

Wang Pengcheng,Zhou Xianlong,Li Gang,Ma Haoli,Liu Ruining,Zhao YanORCID

Abstract

Abstract Background Ventilator-induced diaphragm dysfunction (VIDD) is a common complication of life support by mechanical ventilation observed in critical patients in clinical practice and may predispose patients to severe complications such as ventilator-associated pneumonia or ventilator discontinuation failure. To date, the alterations in microRNA (miRNA) expression in the rat diaphragm in a VIDD model have not been elucidated. This study was designed to identify these alterations in expression. Results Adult male Wistar rats received conventional controlled mechanical ventilation (CMV) or breathed spontaneously for 12 h. Then, their diaphragm tissues were collected for RNA extraction. The miRNA expression alterations in diaphragm tissue were investigated by high-throughput microRNA-sequencing (miRNA-seq). For targeted mRNA functional analysis, gene ontology (GO) analyses and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were subsequently conducted. qRT-PCR validation and luciferase reporter assays were performed. We successfully constructed a model of ventilator-induced diaphragm dysfunction and identified 38 significantly differentially expressed (DE) miRNAs, among which 22 miRNAs were upregulated and 16 were downregulated. GO analyses identified functional genes, and KEGG pathway analyses revealed the signaling pathways that were most highly correlated, which were the MAPK pathway, FoxO pathway and Autophagy–animal. Luciferase reporter assays showed that STAT3 was a direct target of both miR-92a-1-5p and miR-874-3p and that Trim63 was a direct target of miR-3571. Conclusions The current research supplied novel perspectives on miRNAs in the diaphragm, which may not only be implicated in diaphragm dysfunction pathogenesis but could also be considered as therapeutic targets in diaphragm dysfunction.

Funder

National Natural Science Foundation of China

Emergency Response Project of Hubei Science and Technology Department

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Reference56 articles.

1. Zhang LJ, Ni SZ, Zhou XL, Zhao Y. Hemorrhagic Shock Sensitized the Diaphragm to Ventilator-Induced Dysfunction through the Activation of IL-6/JAK/STAT Signaling-Mediated Autophagy in Rats. Mediators Inflamm. 2019;2019:3738409.

2. Gotts JE, Matthay MA. Sepsis: pathophysiology and clinical management. BMJ (Clinical research ed). 2016;353:i1585.

3. Mas A, Masip J. Noninvasive ventilation in acute respiratory failure. Int J Chronic Obstr Pulm Dis. 2014;9:837–52.

4. Ramachandran P, Swamy L, Kaul V, Agrawal AJC. A National Strategy for Ventilator and ICU Resource Allocation During the COVID-19 Pandemic. 2020.

5. Azuelos I, Jung B, Picard M, Liang F, Li T, Lemaire C, et al. Relationship between Autophagy and Ventilator-induced Diaphragmatic Dysfunction. Anesthesiology. 2015;122(6):1349–61.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3