Genome-wide identification of WD40 transcription factors and their regulation of the MYB-bHLH-WD40 (MBW) complex related to anthocyanin synthesis in Qingke (Hordeum vulgare L. var. nudum Hook. f.)

Author:

Chen Lin,Cui Yongmei,Yao Youhua,An Likun,Bai Yixiong,Li Xin,Yao Xiaohua,Wu Kunlun

Abstract

Abstract Background WD40 transcription factors, a large gene family in eukaryotes, are involved in a variety of growth regulation and development pathways. WD40 plays an important role in the formation of MYB-bHLH-WD (MBW) complexes associated with anthocyanin synthesis, but studies of Qingke barley are lacking. Results In this study, 164 barley HvWD40 genes were identified in the barley genome and were analyzed to determine their relevant bioinformatics. The 164 HvWD40 were classified into 11 clusters and 14 subfamilies based on their structural and phylogenetic protein profiles. Co-lineage analysis revealed that there were 43 pairs between barley and rice, and 56 pairs between barley and maize. Gene ontology (GO) enrichment analysis revealed that the molecular function, biological process, and cell composition were enriched. The Kyoto Encyclopedia of Genes and Genomes (KEGG) results showed that the RNA transport pathway was mainly enriched. Based on the identification and analysis of the barley WD40 family and the transcriptome sequencing (RNA-seq) results, we found that HvWD40-140 (WD40 family; Gene ID: r1G058730), HvANT1 (MYB family; Gene ID: HORVU7Hr1G034630), and HvANT2 (bHLH family; Gene ID: HORVU2Hr1G096810) were important components of the MBW complex related to anthocyanin biosynthesis in Qingke, which was verified via quantitative real-time fluorescence polymerase chain reaction (qRT-PCR), subcellular location, yeast two-hybrid (Y2H), and bimolecular fluorescent complimentary (BiFC) and dual-luciferase assay analyses. Conclusions In this study, we identified 164 HvWD40 genes in barley and found that HvnANT1, HvnANT2, and HvWD40-140 can form an MBW complex and regulate the transcriptional activation of the anthocyanin synthesis related structural gene HvDFR. The results of this study provide a theoretical basis for further study of the mechanism of HvWD40-140 in the MBW complex related to anthocyanin synthesis in Qingke.

Funder

The Construction Project for Innovation Platform of Qinghai province

The Agriculture Research System of China

The Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3