Author:
Raj Garima,Shadab Mohammad,Deka Sujata,Das Manashi,Baruah Jilmil,Bharali Rupjyoti,Talukdar Narayan C.
Abstract
Abstract
Background
Seeds of plants are a confirmation of their next generation and come associated with a unique microbia community. Vertical transmission of this microbiota signifies the importance of these organisms for a healthy seedling and thus a healthier next generation for both symbionts. Seed endophytic bacterial community composition is guided by plant genotype and many environmental factors. In north-east India, within a narrow geographical region, several indigenous rice genotypes are cultivated across broad agroecosystems having standing water in fields ranging from 0-2 m during their peak growth stage. Here we tried to trap the effect of rice genotypes and agroecosystems where they are cultivated on the rice seed microbiota. We used culturable and metagenomics approaches to explore the seed endophytic bacterial diversity of seven rice genotypes (8 replicate hills) grown across three agroecosystems.
Results
From seven growth media, 16 different species of culturable EB were isolated. A predictive metabolic pathway analysis of the EB showed the presence of many plant growth promoting traits such as siroheme synthesis, nitrate reduction, phosphate acquisition, etc. Vitamin B12 biosynthesis restricted to bacteria and archaea; pathways were also detected in the EB of two landraces. Analysis of 522,134 filtered metagenomic sequencing reads obtained from seed samples (n=56) gave 4061 OTUs. Alpha diversity indices showed significant differences in observed OTU richness (P≤0.05) across genotypes. Significant differences were also found between the individual hills of a rice genotype. PCoA analysis exhibited three separate clusters and revealed the clusters separated based on genotype, while agroecosystem showed a minimal effect on the variation of seed microbiota (adonis, R2=0.07, P=0.024). Interestingly, animal gut resident bacteria such as Bifidobacterium, Faecalibacterium, Lactobacillus, etc. were found in abundance as members of the seed microbiota.
Conclusion
Overall, our study demonstrates, indigenous rice genotypes of north-east India have a unique blend of endophytic bacteria in their mature seeds. While there are notable variations among plants of the same genotype, we found similarities among genotypes cultivated in completely different environmental conditions. The beta diversity variations across the seven rice genotypes were significantly shaped by their genotype rather than their agroecosystems.
Publisher
Springer Science and Business Media LLC
Reference44 articles.
1. Thakuria D, Talukdar NC, Goswami C, Hazarika S, Boro R, Khan M. Characterization and screening of bacteria from rhizosphere of rice grown in acidic soils of assam. Curr Sci. 2004; 86:978–85.
2. Mano H, Morisaki H. Endophytic bacteria in the rice plant. Microbes Environ JSME. 2008; 23:109–17.
3. Mano H, Tanaka F, Watanabe A, Kaga H, Okunishi S, Morisaki H. Culturable surface and endophytic bacterial flora of the maturing seeds of rice plants (oryza sativa) cultivated in a paddy field. Microbes Environ. 2006; 21(2):86–100.
4. Compant S, Clément C, Sessitsch A. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem. 2010; 42(5):669–78.
5. Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P. Structure and functions of the bacterial microbiota of plants. Ann Rev Plant Biol. 2013; 64(1):807–38.
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献