Author:
Akbari Rokn Abadi Saeedeh,Mohammadi Amirhossein,Koohi Somayyeh
Abstract
Abstract
Background
The prevalence of the COVID-19 disease in recent years and its widespread impact on mortality, as well as various aspects of life around the world, has made it important to study this disease and its viral cause. However, very long sequences of this virus increase the processing time, complexity of calculation, and memory consumption required by the available tools to compare and analyze the sequences.
Results
We present a new encoding method, named PC-mer, based on the k-mer and physic-chemical properties of nucleotides. This method minimizes the size of encoded data by around 2 k times compared to the classical k-mer based profiling method. Moreover, using PC-mer, we designed two tools: 1) a machine-learning-based classification tool for coronavirus family members with the ability to recive input sequences from the NCBI database, and 2) an alignment-free computational comparison tool for calculating dissimilarity scores between coronaviruses at the genus and species levels.
Conclusions
PC-mer achieves 100% accuracy despite the use of very simple classification algorithms based on Machine Learning. Assuming dynamic programming-based pairwise alignment as the ground truth approach, we achieved a degree of convergence of more than 98% for coronavirus genus-level sequences and 93% for SARS-CoV-2 sequences using PC-mer in the alignment-free classification method. This outperformance of PC-mer suggests that it can serve as a replacement for alignment-based approaches in certain sequence analysis applications that rely on similarity/dissimilarity scores, such as searching sequences, comparing sequences, and certain types of phylogenetic analysis methods that are based on sequence comparison.
Publisher
Springer Science and Business Media LLC
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献