COMPUTATIONAL TOOLS FOR THE DNA TEXT COMPLEXITY ESTIMATES FOR MICROBIAL GENOMES STRUCTURE ANALYSIS

Author:

Mitina A.1,Orlova N.2,Dergilev A.34,Orlov Yuriy1435

Affiliation:

1. Sechenov University

2. Financial University under the Government of the Russian Federation

3. Novosibirsk State University

4. Institute of Cytology and Genetics SB RAS

5. Peoples’ Friendship University of Russia

Abstract

One of the fundamental tasks in bioinformatics involves searching for repeats, which are statistically heterogeneous segments within DNA sequences and complete genomes of microorganisms. Theoretical approaches to analyzing the complexity of macromolecule sequences (DNA, RNA, and proteins) were established prior to the availability of complete genomic sequences. These approaches have experienced a resurgence due to the proliferation of mass parallel sequencing technologies and the exponential growth of accessible data. This article explores contemporary computer methods and existing programs designed to assess DNA text complexity as well as construct profiles of properties for analysing the genomic structures of microorganisms. The article offers a comprehensive overview of available online programs designed for detecting and visualising repeats within genetic text. Furthermore, the paper introduces a novel computer-based implementation of a method to evaluate the linguistic complexity of text and its compression using Lempel-Ziv. This approach aims to identify structural features and anomalies within the genomes of microorganisms. The article also provides examples of profiles generated through the analysis of text complexity. Application of these complexity estimates in the analysis of genome sequences, such as those of the SARS-CoV-2 coronavirus and the Mumps Orthorubulavirus, is discussed. Specific areas of low complexity within the genetic text have been successfully identified in this research.

Publisher

RIOR Publishing Center

Reference45 articles.

1. Simoes R.P., Wolf I.R., Correa B.A., Valente G.T. Uncovering patterns of the evolution of genomic sequence entropy and complexity. Mol Genet Genomics, 2021, vol. 296, no. 2, pp. 289-298, doi: 10.1007/s00438-020-01729-y., Simoes R.P., Wolf I.R., Correa B.A., Valente G.T. Uncovering patterns of the evolution of genomic sequence entropy and complexity. Mol Genet Genomics, 2021, vol. 296, no. 2, pp. 289-298, doi: 10.1007/s00438-020-01729-y.

2. Orlov Y.L., Potapov V.N. Complexity: an internet resource for analysis of DNA sequence complexity. Nucleic Acids Res., 2004, vol. 32, pp. W628-W633, doi: 10.1093/nar/gkh466., Orlov Y.L., Potapov V.N. Complexity: an internet resource for analysis of DNA sequence complexity. Nucleic Acids Res., 2004, vol. 32, pp. W628-W633, doi: 10.1093/nar/gkh466.

3. Bartal A., Jagodnik K.M. Progress in and Opportunities for Applying Information Theory to Computational Biology and Bioinformatics. Entropy (Basel), 2022, vol. 24, no. 7, pp. 925, doi: 10.3390/e24070925., Bartal A., Jagodnik K.M. Progress in and Opportunities for Applying Information Theory to Computational Biology and Bioinformatics. Entropy (Basel), 2022, vol. 24, no. 7, pp. 925, doi: 10.3390/e24070925.

4. Bernaola-Galvan P., Carpena P., Gomez-Martin C., Oliver J.L. Compositional Structure of the Genome: A Review. Biology (Basel), 2023, vol. 12, no. 6, p. 849, doi: 10.3390/biology12060849., Bernaola-Galvan P., Carpena P., Gomez-Martin C., Oliver J.L. Compositional Structure of the Genome: A Review. Biology (Basel), 2023, vol. 12, no. 6, p. 849, doi: 10.3390/biology12060849.

5. Chang C.H., Hsieh L.C., Chen T.Y., Chen H.D., Luo L., Lee H.C. Shannon information in complete genomes. J. Bioinform. Comput. Biol., 2005, vol. 3, no. 3, pp. 587-608, doi: 10.1142/s0219720005001181., Chang C.H., Hsieh L.C., Chen T.Y., Chen H.D., Luo L., Lee H.C. Shannon information in complete genomes. J. Bioinform. Comput. Biol., 2005, vol. 3, no. 3, pp. 587-608, doi: 10.1142/s0219720005001181.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3