Compositional Structure of the Genome: A Review

Author:

Bernaola-Galván Pedro1,Carpena Pedro1ORCID,Gómez-Martín Cristina23ORCID,Oliver Jose L.3ORCID

Affiliation:

1. Department of Applied Physics II and Institute Carlos I for Theoretical and Computational Physics, University of Málaga, 29071 Málaga, Spain

2. Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands

3. Department of Genetics, Faculty of Sciences, 18071 and Laboratory of Bioinformatics, Institute of Biotechnology, Center of Biomedical Research, University of Granada, 18100 Granada, Spain

Abstract

As the genome carries the historical information of a species’ biotic and environmental interactions, analyzing changes in genome structure over time by using powerful statistical physics methods (such as entropic segmentation algorithms, fluctuation analysis in DNA walks, or measures of compositional complexity) provides valuable insights into genome evolution. Nucleotide frequencies tend to vary along the DNA chain, resulting in a hierarchically patchy chromosome structure with heterogeneities at different length scales that range from a few nucleotides to tens of millions of them. Fluctuation analysis reveals that these compositional structures can be classified into three main categories: (1) short-range heterogeneities (below a few kilobase pairs (Kbp)) primarily attributed to the alternation of coding and noncoding regions, interspersed or tandem repeats densities, etc.; (2) isochores, spanning tens to hundreds of tens of Kbp; and (3) superstructures, reaching sizes of tens of megabase pairs (Mbp) or even larger. The obtained isochore and superstructure coordinates in the first complete T2T human sequence are now shared in a public database. In this way, interested researchers can use T2T isochore data, as well as the annotations for different genome elements, to check a specific hypothesis about genome structure. Similarly to other levels of biological organization, a hierarchical compositional structure is prevalent in the genome. Once the compositional structure of a genome is identified, various measures can be derived to quantify the heterogeneity of such structure. The distribution of segment G+C content has recently been proposed as a new genome signature that proves to be useful for comparing complete genomes. Another meaningful measure is the sequence compositional complexity (SCC), which has been used for genome structure comparisons. Lastly, we review the recent genome comparisons in species of the ancient phylum Cyanobacteria, conducted by phylogenetic regression of SCC against time, which have revealed positive trends towards higher genome complexity. These findings provide the first evidence for a driven progressive evolution of genome compositional structure.

Funder

Spanish Minister of Science, Innovation and Universities (former Spanish Minister of Economy and Competitiveness

Stitching Cancer Center Amsterdam

Spanish Ministerio de Ciencia e Innovación

Spanish Junta de Andalucía

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3