Author:
Zong Dan,Qiao Zhensheng,Zhou Jintao,Li Peiling,Gan Peihua,Ren Meirong,He Chengzhong
Abstract
Abstract
Background
Toxicodendron vernicifluum, belonging to the family Anacardiaceae, is an important commercial arbor species, which can provide us with the raw lacquer, an excellent adhesive and painting material used to make lacquer ware. Compared with diploid, triploid lacquer tree has a higher yield of raw lacquer and stronger resistance to stress. Triploid T. vernicifluum was a newly discovered natural triploid lacquer tree. However, the taxonomy of triploid T. vernicifluum has remained uncertain. Here, we sequenced and analyzed the complete chloroplast (cp) genome of triploid T. vernicifluum and compared it with related species of Toxicodendron genus based on chloroplast genome and SSR markers.
Results
The plastome of triploid T. vernicifluum is 158,221 bp in length, including a pair of inverted repeats (IRs) of 26,462 bp, separated by a large single-copy region of 86,951 bp and a small single-copy region of 18,346 bp. In total, 132 genes including 87 protein-coding genes, 37 tRNA genes and 8 rRNA genes were identified in the triploid T. vernicifluum. Among these, 16 genes were duplicated in the IR regions, 14 genes contain one intron, while three genes contain two introns. After nucleotide substitutions, seven small inversions were analyzed in the chloroplast genomes, eight hotspot regions were found, which could be useful molecular genetic markers for future population genetics. Phylogenetic analyses showed that triploid T. vernicifluum was a sister to T. vernicifluum cv. Dahongpao and T. vernicifluum cv. Hongpigaobachi. Moreover, phylogenetic clustering based on the SSR markers showed that all the samples of triploid T. vernicifluum, T. vernicifluum cv. Dahongpao and T. vernicifluum cv. Hongpigaobachi in one group, while the samples of T. vernicifluum and T. succedaneum in another group, which is consistent with the cp genome and morphological analysis.
Conclusions
The current genomic datasets provide pivotal genetic resources to determine the phylogenetic relationships, variety identification, breeding and resource exploitation, and future genetic diversity-related studies of T. vernicifluum.
Funder
Applied Basic Research Foundation of Yunnan Province
Yunnan Provincial Expert Workstation
Yunnan Provincial Ten-Thousand Program -Industry Leading Talents
Publisher
Springer Science and Business Media LLC