Evolutionary balance between LRR domain loss and young NBS–LRR genes production governs disease resistance in Arachis hypogaea cv. Tifrunner

Author:

Song HuiORCID,Guo Zhonglong,Hu Xiaohui,Qian Lang,Miao Fuhong,Zhang Xiaojun,Chen Jing

Abstract

Abstract Background Cultivated peanut (Arachis hypogaea L.) is an important oil and protein crop, but it has low disease resistance; therefore, it is important to reveal the number, sequence features, function, and evolution of genes that confer resistance. Nucleotide-binding site–leucine-rich repeats (NBS–LRRs) are resistance genes that are involved in response to various pathogens. Results We identified 713 full-length NBS–LRRs in A. hypogaea cv. Tifrunner. Genetic exchange events occurred on NBS–LRRs in A. hypogaea cv. Tifrunner, which were detected in the same subgenomes and also found in different subgenomes. Relaxed selection acted on NBS–LRR proteins and LRR domains in A. hypogaea cv. Tifrunner. Using quantitative trait loci (QTL), we found that NBS–LRRs were involved in response to late leaf spot, tomato spotted wilt virus, and bacterial wilt in A. duranensis (2 NBS–LRRs), A. ipaensis (39 NBS–LRRs), and A. hypogaea cv. Tifrunner (113 NBS–LRRs). In A. hypogaea cv. Tifrunner, 113 NBS–LRRs were classified as 75 young and 38 old NBS–LRRs, indicating that young NBS–LRRs were involved in response to disease after tetraploidization. However, compared to A. duranensis and A. ipaensis, fewer LRR domains were found in A. hypogaea cv. Tifrunner NBS–LRR proteins, partly explaining the lower disease resistance of the cultivated peanut. Conclusions Although relaxed selection acted on NBS–LRR proteins and LRR domains, LRR domains were preferentially lost in A. hypogaea cv. Tifrunner compared to A. duranensis and A. ipaensis. The QTL results suggested that young NBS–LRRs were important for resistance against diseases in A. hypogaea cv. Tifrunner. Our results provid insight into the greater susceptibility of A. hypogaea cv. Tifrunner to disease compared to A. duranensis and A. ipaensis.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3