Deciphering peanut complex genomes paves a way to understand its origin and domestication

Author:

Pan Yuxin1ORCID,Zhuang Yuhui2,Liu Tao1,Chen Hua2,Wang Lihui2,Varshney Rajeev K.3,Zhuang Weijian2ORCID,Wang Xiyin1

Affiliation:

1. Center for Genomics and Computational Biology College of Life Science, and College of Science North China University of Science and Technology Tangshan Hebei China

2. Fujian Provincial Key Laboratory of Plant Molecular and Cell Biology Oil Crops Research Institute State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops Fujian Agriculture and Forestry University Fuzhou China

3. State Agricultural Biotechnology Centre, and Centre for Crop & Food Innovation Food Futures Institute Murdoch University Murdoch West Australia Australia

Abstract

SummaryPeanut (Arachis) is a key oil and protein crop worldwide with large genome. The genomes of diploid and tetraploid peanuts have been sequenced, which were compared to decipher their genome structures, evolutionary, and life secrets. Genome sequencing efforts showed that different cultivars, although Bt homeologs being more privileged in gene retention and gene expression. This subgenome bias, extended to sequence variation and point mutation, might be related to the long terminal repeat (LTR) explosions after tetraploidization, especially in At subgenomes. Except that, whole‐genome sequences revealed many important genes, for example, fatty acids and triacylglycerols pathway, NBS‐LRR (nucleotide‐binding site‐leucine‐rich repeats), and seed size decision genes, were enriched after recursive polyploidization. Each ancestral polyploidy, with old ones having occurred hundreds of thousand years ago, has thousands of duplicated genes in extant genomes, contributing to genetic novelty. Notably, although full genome sequences are available, the actual At subgenome ancestor has still been elusive, highlighted with new debate about peanut origin. Although being an orphan crop lagging behind other crops in genomic resources, the genome sequencing achievement has laid a solid foundation for advancing crop enhancement and system biology research of peanut.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Plant Science,Agronomy and Crop Science,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3