Genome-wide identification of R2R3-MYB gene family and association with anthocyanin biosynthesis in Brassica species

Author:

Chen Daozong,Chen Haidong,Dai Guoqiang,Zhang Haimei,Liu Yi,Shen Wenjie,Zhu Bo,Cui Cheng,Tan Chen

Abstract

AbstractBrassica species include important oil crops and vegetables in the world. The R2R3-MYB gene participates in a variety of plant functions, including the activation or inhibition of anthocyanin biosynthesis. Although previous studies have reported its phylogenetic relationships, gene structures, and expression patterns in Arabidopsis, the number and sequence variation of this gene family in Brassica crops and its involvement in the natural quantitative variation in anthocyanin biosynthesis regulation are still largely unknown. In this study, by using whole genome sequences and comprehensive genome-wide comparative analysis among the six cultivated Brassica species, 2120 R2R3-MYB genes were identified in six Brassica species, in total These R2R3-MYB genes were phylogenetically clustered into 12 groups. The R2R3-MYB family between A and C subgenomes showed better collinearity than between B and C and between A and B. From comparing transcriptional changes of five Brassica species with the purple and green leaves for the detection of the R2R3-MYB genes associated with anthocyanin biosynthesis, 7 R2R3-MYB genes were co-differentially expressed. The promoter and structure analysis of these genes showed that some variations between non-coding region, but they were highly conserved at the protein level and spatial structure. Co-expression analysis of anthocyanin-related genes and R2R3-MYBs indicated that MYB90 was strongly co-expressed with TT8, and they were co-expressed with structural genes F3H, LDOX, ANS and UF3GT at the same time. These results further clarified the roles of the R2R3-MYBs for leaf coloration in Brasica species, which provided new insights into the functions of the R2R3-MYB gene family in Brasica species.

Funder

Natural Science Foundation of Jiangxi Province

National Natural Science Foundation of China

Science and Technology Plan Project of Ganzhou

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3