De novo transcriptome sequencing and analysis of salt-, alkali-, and drought-responsive genes in Sophora alopecuroides

Author:

Yan Fan,Zhu Youcheng,Zhao Yanan,Wang Ying,Li Jingwen,Wang Qingyu,Liu Yajing

Abstract

Abstract Background Salinity, alkalinity, and drought stress are the main abiotic stress factors affecting plant growth and development. Sophora alopecuroides L., a perennial leguminous herb in the genus Sophora, is a highly salt-tolerant sand-fixing pioneer species distributed mostly in Western Asia and northwestern China. Few studies have assessed responses to abiotic stress in S. alopecuroides. The transcriptome of the genes that confer stress-tolerance in this species has not previously been sequenced. Our objective was to sequence and analyze this transcriptome. Results Twelve cDNA libraries were constructed in triplicate from mRNA obtained from Sophora alopecuroides for the control and salt, alkali, and drought treatments. Using de novo assembly, 902,812 assembled unigenes were generated, with an average length of 294 bp. Based on similarity searches, 545,615 (60.43%) had at least one significant match in the Nr, Nt, Pfam, KOG/COG, Swiss-Prot, and GO databases. In addition, 1673 differentially expressed genes (DEGs) were obtained from the salt treatment, 8142 from the alkali treatment, and 17,479 from the drought treatment. A total of 11,936 transcription factor genes from 82 transcription factor families were functionally annotated under salt, alkali, and drought stress, these include MYB, bZIP, NAC and WRKY family members. DEGs were involved in the hormone signal transduction pathway, biosynthesis of secondary metabolites and antioxidant enzymes; this suggests that these pathways or processes may be involved in tolerance towards salt, alkali, and drought stress in S. alopecuroides. Conclusion Our study first reported transcriptome reference sequence data in Sophora alopecuroides, a non-model plant without a reference genome. We determined digital expression profile and discovered a broad survey of unigenes associated with salt, alkali, and drought stress which provide genomic resources available for Sophora alopecuroides.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Reference119 articles.

1. Innovative Saline Agriculture;JC Dagar,2016

2. Kang JJ, Zhao WZ, Ming Z, Zheng Y, Yang F. NaCl and Na2SiO3 coexistence strengthens growth of the succulent xerophyte Nitraria tangutorum under drought. Plant Growth Regul. 2015;77(2):223–32.

3. FAO/AGL Extent and causes of salt-affected soils in participating countries. FAO/AGL- global network on integrated soil management for sustainable use of salt-affected lands. 2000. http://www.fao.org/ag/agl/agll/spush/topic2.htm.

4. Dasgupta S, Hossain MM, Huq M, Wheeler D. Climate change, salinization and high-yield rice production in coastal Bangladesh. Agric Resourc Econ Rev. 2018;47(1):66–89.

5. Mandal AK, Sharma RC, Singh G, Dagar JC. Computerized database on salt affected soils in India. Technical bulletin No.2/2010.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3