Author:
Yan Fan,Zhu Youcheng,Zhao Yanan,Wang Ying,Li Jingwen,Wang Qingyu,Liu Yajing
Abstract
Abstract
Background
Salinity, alkalinity, and drought stress are the main abiotic stress factors affecting plant growth and development. Sophora alopecuroides L., a perennial leguminous herb in the genus Sophora, is a highly salt-tolerant sand-fixing pioneer species distributed mostly in Western Asia and northwestern China. Few studies have assessed responses to abiotic stress in S. alopecuroides. The transcriptome of the genes that confer stress-tolerance in this species has not previously been sequenced. Our objective was to sequence and analyze this transcriptome.
Results
Twelve cDNA libraries were constructed in triplicate from mRNA obtained from Sophora alopecuroides for the control and salt, alkali, and drought treatments. Using de novo assembly, 902,812 assembled unigenes were generated, with an average length of 294 bp. Based on similarity searches, 545,615 (60.43%) had at least one significant match in the Nr, Nt, Pfam, KOG/COG, Swiss-Prot, and GO databases. In addition, 1673 differentially expressed genes (DEGs) were obtained from the salt treatment, 8142 from the alkali treatment, and 17,479 from the drought treatment. A total of 11,936 transcription factor genes from 82 transcription factor families were functionally annotated under salt, alkali, and drought stress, these include MYB, bZIP, NAC and WRKY family members. DEGs were involved in the hormone signal transduction pathway, biosynthesis of secondary metabolites and antioxidant enzymes; this suggests that these pathways or processes may be involved in tolerance towards salt, alkali, and drought stress in S. alopecuroides.
Conclusion
Our study first reported transcriptome reference sequence data in Sophora alopecuroides, a non-model plant without a reference genome. We determined digital expression profile and discovered a broad survey of unigenes associated with salt, alkali, and drought stress which provide genomic resources available for Sophora alopecuroides.
Publisher
Springer Science and Business Media LLC
Reference119 articles.
1. Innovative Saline Agriculture;JC Dagar,2016
2. Kang JJ, Zhao WZ, Ming Z, Zheng Y, Yang F. NaCl and Na2SiO3 coexistence strengthens growth of the succulent xerophyte Nitraria tangutorum under drought. Plant Growth Regul. 2015;77(2):223–32.
3. FAO/AGL Extent and causes of salt-affected soils in participating countries. FAO/AGL- global network on integrated soil management for sustainable use of salt-affected lands. 2000. http://www.fao.org/ag/agl/agll/spush/topic2.htm.
4. Dasgupta S, Hossain MM, Huq M, Wheeler D. Climate change, salinization and high-yield rice production in coastal Bangladesh. Agric Resourc Econ Rev. 2018;47(1):66–89.
5. Mandal AK, Sharma RC, Singh G, Dagar JC. Computerized database on salt affected soils in India. Technical bulletin No.2/2010.