Comparative Transcriptomic Analysis Reveals Transcriptional Differences in the Response of Quinoa to Salt and Alkali Stress Responses

Author:

Bao Qinghan12,Wu Yang1,Wang Yang12,Zhang Yongping1

Affiliation:

1. College of Agriculture, Inner Mongolia Agricultural University, Hohhot 010018, China

2. College of Life Sciences, Jilin Normal University, Siping 136000, China

Abstract

Soil salinization is a global agro-ecological problem and a major factor impeding agricultural development. Planting salt-tolerant plants to improve saline soils offers both ecological and economic benefits. Currently, there are few studies addressing the combined effects of salt and alkali stress. Quinoa is known for its salinity tolerance. However, research has predominantly focused on the effects of salinity stress on quinoa’s morphology and physiology, with its molecular mechanisms remaining unclear. To better understand quinoa’s response mechanisms to salinity and alkali stress, we employed RNA-seq technology to analyze transcriptomes under these conditions. We identified 1833 differentially expressed genes (DEGs) under salt stress and 2233 DEGs under alkali stress. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations revealed that quinoa responds to salt and alkali stress through similar mechanisms. Both stresses promoted sucrose synthesis, starch synthesis and catabolism, which increased the osmotic potential of quinoa leaves. Additionally, there was a regulation of the down-regulated expression of the abscisic acid receptor PYR/PYL and the up-regulated expression of the serine/threonine protein kinase (PP2C) gene in the ABA signaling pathway. Contrasting with salt tolerance, the mechanism specific to quinoa’s alkalinity tolerance involves the up-regulation of the citric acid cycle via an active γ-aminobutyric acid (GABA) branch, enhancing quinoa’s energy metabolism. In summary, our transcriptome analysis revealed key regulatory mechanisms in quinoa’s response to saline and alkaline stress. This study deepens the understanding of quinoa’s stress response mechanisms and provides theoretical references for the biological improvement of salinized soils.

Funder

National Key Research and Development Program of China

Industrialization Research Project of Jilin Provincial Department of Education

Publisher

MDPI AG

Reference77 articles.

1. Deep sequencing reveals important roles of microRNAs in response to drought and salinity stress in cotton;Xie;J. Exp. Bot.,2015

2. Global mapping of soil salinity change;Ivushkin;Remote Sens. Environ.,2019

3. Srivastava, P. (2019). Microorganisms in Saline Environments: Strategies and Functions, Springer International Publishing.

4. Sustainable agriculture development in saline-alkal soil area of Song Nen plain, northeast China;Wang;Chin. Geogr. Sci.,2003

5. The resource of saline soil and its exploitation and utilization in China;Yu;Chin. J. Soil Sci.,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3