Author:
Wang Tianfeng,Xu Si,Zhang Lei,Yang Tianjun,Fan Xiaoqin,Zhu Chunyan,Wang Yinzhong,Tong Fei,Mei Qing,Pan Aijun
Abstract
Abstract
Background
Sepsis is a high mortality disease which seriously threatens human life and health, for which the pathogenetic mechanism still unclear. There is increasing evidence showed that immune and inflammation responses are key players in the development of sepsis pathology. LncRNAs, which act as ceRNAs, have critical roles in various diseases. However, the regulatory roles of ceRNA in the immunopathogenesis of sepsis have not yet been elucidated.
Results
In this study, we aimed to identify immune biomarkers associated with sepsis. We first generated a global immune-associated ceRNA (IMCE) network based on data describing interactions pairs of gene–miRNA and miRNA–lncRNA. Afterward, we excavated a dysregulated sepsis immune-associated ceRNA (SPIMC) network from the global IMCE network by means of a multi-step computational approach. Functional enrichment indicated that lncRNAs in SPIMC network have pivotal roles in the immune mechanism underlying sepsis. Subsequently, we identified module and hub genes (CD4 and STAT4) via construction of a sepsis immune-related PPI network. Then, we identified hub genes based on the modular structure of PPI network and generated a ceRNA subnetwork to analyze key lncRNAs associated with sepsis. Finally, 6 lncRNAs (LINC00265, LINC00893, NDUFA6-AS1, NOP14-AS1, PRKCQ-AS1 and ZNF674-AS1) that identified as immune biomarkers of sepsis. Moreover, the CIBERSORT algorithm and the infiltration of circulating immune cells types were performed to identify the inflammatory state of sepsis. Correlation analyses between immune cells and sepsis immune biomarkers showed that the LINC00265 was strongly positive correlated with the macrophages M2 (r = 0.77).
Conclusion
Collectively, these results may suggest that these lncRNAs (LINC00265, LINC00893, NDUFA6-AS1, NOP14-AS1, PRKCQ-AS1 and ZNF674-AS1) played important roles in the immune pathogenesis of sepsis and provide potential therapeutic targets for further researches on immune therapy treatment in patients with sepsis.
Funder
Natural Science Research Project of Colleges and Universities in Anhui Province
Anhui Province Key Research and Development Program
Publisher
Springer Science and Business Media LLC
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献