Affiliation:
1. School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
2. Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, South China University of Technology, Guangzhou 510006, China
Abstract
Gliomas are the most prevalent primary malignant tumors affecting the brain, with high recurrence and mortality rates. Accurate diagnoses and effective treatment challenges persist, emphasizing the need for identifying new biomarkers to guide clinical decisions. Long noncoding RNAs (lncRNAs) hold potential as diagnostic and therapeutic biomarkers in cancer. However, only a limited subset of lncRNAs in gliomas have been explored. Therefore, this study aims to identify lncRNA signatures applicable to patients with gliomas across all grades and explore their clinical significance and potential biological mechanisms. Data used in this study were obtained from TCGA, CGGA, and GEO datasets to identify key lncRNA signatures in gliomas through differential and survival analyses and machine learning algorithms. We examined their associations with the clinical characteristics, gene mutations, diagnosis, and prognosis of gliomas. Functional enrichment analysis was employed to elucidate the potential biological mechanisms associated with these significant lncRNA signatures. We explored competing endogenous RNA (ceRNA) regulatory networks. We found that NDUFA6-DT emerged as a significant lncRNA signature in gliomas, with reduced NDUFA6-DT expression associated with a worse prognosis in gliomas. Nomogram analysis incorporating NDUFA6-DT expression levels exhibited excellent prognostic and predictive capabilities. Functional annotation suggested that NDUFA6-DT might influence immunological responses and synaptic transmission, potentially modifying glioma initiation and progression. The associated ceRNA network revealed the possible presence of the NDUFA6-DT-miR-455-3p-YWHAH/YWHAG axis in low-grade glioma (LGG) and glioblastoma multiforme (GBM), regulating the PI3K-AKT signaling pathway and influencing glioma cell survival and apoptosis. We believe that NDUFA6-DT is a novel lncRNA linked to glioma diagnosis and prognosis, potentially becoming a pivotal biomarker for glioma.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Guangdong Province, China
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献