Scale development and utilization of universal PCR-based and high-throughput KASP markers specific for chromosome arms of rye (Secale cereale L.)

Author:

Han Guohao,Liu Shiyu,Jin Yuli,Jia Mengshu,Ma Pengtao,Liu Hong,Wang Jing,An DiaoguoORCID

Abstract

Abstract Background Rye (Secale cereale L., 2n = 2x = 14, RR), a relative of common wheat, is a large gene resource pool for wheat improvement. Accurate and convenient identification of the rye chromatin in wheat background will facilitate the transfer and utilization of elite genes derived from rye in wheat breeding. Results In the present study, five rye cultivars including Imperial, German White, Jingzhouheimai, Baili and Guyuan were sequenced by specific-locus amplified fragment sequencing (SLAF-seq) to develop large-scale rye-specific markers. Based on SLAF-seq and bioinformatics analyses, a total of 404 universal PCR-based and a whole set of Kompetitive allele-specific PCR (KASP) markers specific for the 14 individual rye chromosome arms were developed and validated. Additionally, two KASP markers specific for 1RS and 2RL were successfully applied in the detection of 1RS translocations in a natural population and 2RL chromosome arms in wheat-rye derived progenies that conferred adult resistance to powdery mildew. Conclusion The 404 PCR-based markers and 14 KASP markers specific for the 14 individual rye chromosome arms developed in this study can enrich the marker densities for gene mapping and accelerate the utilization of rye-derived genes in wheat improvement. Especially, the KASP markers achieved high-throughput and accurate detection of rye chromatin in wheat background, thus can be efficiently used in marker-assisted selection (MAS). Besides, the strategy of rye-specific PCR-based markers converting into KASP markers was high-efficient and low-cost, which will facilitate the tracing of alien genes, and can also be referred for other wheat relatives.

Funder

Strategic Priority Research Program of the Chinese Academy of Sciences

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3