Transcriptome sequencing and whole genome expression profiling of hexaploid sweetpotato under salt stress

Author:

Arisha Mohamed Hamed,Aboelnasr Hesham,Ahmad Muhammad Qadir,Liu Yaju,Tang Wei,Gao Runfei,Yan Hui,Kou Meng,Wang Xin,Zhang Yungang,Li Qiang

Abstract

Abstract Background Purple-fleshed sweetpotato (PFSP) is one of the most important crops in the word which helps to bridge the food gap and contribute to solve the malnutrition problem especially in developing countries. Salt stress is seriously limiting its production and distribution. Due to lacking of reference genome, transcriptome sequencing is offering a rapid approach for crop improvement with promising agronomic traits and stress adaptability. Results Five cDNA libraries were prepared from the third true leaf of hexaploid sweetpotato at seedlings stage (Xuzi-8 cultivar) treated with 200 mM NaCl for 0, 1, 6, 12, 48 h. Using second and third generation technology, Illumina sequencing generated 170,344,392 clean high-quality long reads that were assembled into 15,998 unigenes with an average length 2178 base pair and 96.55% of these unigenes were functionally annotated in the NR protein database. A number of 537 unigenes failed to hit any homologs which may be considered as novel genes. The current results indicated that sweetpotato plants behavior during the first hour of salt stress was different than the other three time points. Furthermore, expression profiling analysis identified 4, 479, 281, 508 significantly expressed unigenes in salt stress treated samples at the different time points including 1, 6, 12, 48 h, respectively as compared to control. In addition, there were 4, 1202, 764 and 2195 transcription factors differentially regulated DEGs by salt stress at different time points including 1, 6, 12, 48 h of salt stress. Validation experiment was done using 6 randomly selected unigenes and the results was in agree with the DEG results. Protein kinases include many genes which were found to play a vital role in phosphorylation process and act as a signal transductor/ receptor proteins in membranes. These findings suggest that salt stress tolerance in hexaploid sweetpotato plants may be mainly affected by TFs, PKs, Protein Detox and hormones related genes which contribute to enhance salt tolerance. Conclusion These transcriptome sequencing data of hexaploid sweetpotato under salt stress conditions can provide a valuable resource for sweetpotato breeding research and focus on novel insights into hexaploid sweetpotato responses to salt stress. In addition, it offers new candidate genes or markers that can be used as a guide to the future studies attempting to breed salt tolerance sweetpotato cultivars.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Reference60 articles.

1. Troung VD, Avula RY, Pecota K, Yencho CG. Sweet potatoes. In: SINHA NK, editor. Handbook of vegetables and vegetable processing. New Jersey: Wiley-Blackwell; 2011. p. 717–37.

2. Bouwkamp JC. Introduction-part 1. In: Bouwkamp JC, editor. Sweet potato products: a natural resource for the tropics. Boca Raton: CRC Press; 1985. p. 3–7.

3. Zörb C, Geilfus CM, Dietz KJ. Salinity and crop yield. Plant Biol German Soc Plant Sci. 2019;21:31–8.

4. Majeed A, Muhammad Z. Salinity: a major agricultural problem—causes, impacts on crop productivity and management strategies. In: Hasanuzzaman M, Hakeem K, Nahar K, Alharby H, editors. Plant abiotic stress tolerance. Cham: Springer; 2019. p. 83–99.

5. Bhadauria V. Next-generation sequencing and bioinformatics for plant science. Wymondham: Caister Academic Press; 2017.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3